-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathaux.py
84 lines (65 loc) · 2.57 KB
/
aux.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
from collections import namedtuple
from models.maddpg import *
from models.sqddpg import *
from models.independent_ac import *
from models.independent_ddpg import *
from models.coma_fc import *
maddpgArgs = namedtuple( 'maddpgArgs', [] )
randomArgs = namedtuple( 'randomArgs', [] )
sqddpgArgs = namedtuple( 'sqddpgArgs', ['sample_size'] )
independentArgs = namedtuple( 'independentArgs', [] )
comafcArgs = namedtuple( 'comafcArgs', [] )
Model = dict(maddpg=MADDPG,
sqddpg=SQDDPG,
independent_ac=IndependentAC,
independent_ddpg=IndependentDDPG,
coma_fc=COMAFC
)
AuxArgs = dict(maddpg=maddpgArgs,
sqddpg=sqddpgArgs,
independent_ac=independentArgs,
independent_ddpg=independentArgs,
coma_fc=comafcArgs
)
Strategy=dict(maddpg='pg',
sqddpg='pg',
independent_ac='pg',
independent_ddpg='pg',
coma_fc='pg'
)
Args = namedtuple('Args', ['model_name',
'agent_num',
'hid_size',
'obs_size',
'continuous',
'action_dim',
'init_std',
'policy_lrate',
'value_lrate',
'max_steps',
'batch_size', # steps<-online/episodes<-offline
'gamma',
'normalize_advantages',
'entr',
'entr_inc',
'action_num',
'q_func',
'train_episodes_num',
'replay',
'replay_buffer_size',
'replay_warmup',
'cuda',
'grad_clip',
'save_model_freq', # episodes
'target',
'target_lr',
'behaviour_update_freq', # steps<-online/episodes<-offline
'critic_update_times',
'target_update_freq', # steps<-online/episodes<-offline
'gumbel_softmax',
'epsilon_softmax',
'online',
'reward_record_type',
'shared_parameters' # boolean
]
)