-
Notifications
You must be signed in to change notification settings - Fork 101
/
Copy pathrun.py
78 lines (56 loc) · 2.2 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import torch
import numpy as np
import random
import argparse
from typing import Optional, Tuple
from omegaconf import OmegaConf
from torch.distributed import destroy_process_group
try:
from torchmetrics.detection import MeanAveragePrecision
except ImportError:
from torchmetrics.detection import MAP
MeanAveragePrecision = MAP
from custom_utils.ddp_utils import ddp_setup
from custom_utils.train_utils import Trainer, load_train_objects, load_train_optimizer
from custom_utils.utils import F1ScoreWithLogging
def parse_arguments(params: Optional[Tuple] = None) -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Gesture classifier...")
parser.add_argument(
"-c", "--command", required=True, type=str, help="Training or test pipeline", choices=("train", "test")
)
parser.add_argument("-p", "--path_to_config", required=True, type=str, help="Path to config")
parser.add_argument("--n_gpu", required=False, type=int, default=1, help="Number of GPUs to use")
known_args, _ = parser.parse_known_args(params)
return known_args
def run(args):
config = OmegaConf.load(args.path_to_config)
if args.n_gpu > 1:
ddp_setup()
train_dataloader, val_dataloader, test_dataloader, model = load_train_objects(config, args.command, args.n_gpu)
if model.type == "detector":
metric = MeanAveragePrecision(class_metrics=False)
else:
task = "binary" if config.dataset.one_class else "multiclass"
num_classes = 2 if config.dataset.one_class else len(config.dataset.targets)
metric = F1ScoreWithLogging(task=task, num_classes=num_classes)
optimizer, scheduler = load_train_optimizer(model, config)
trainer = Trainer(
model=model,
config=config,
optimizer=optimizer,
scheduler=scheduler,
metric_calculator=metric,
train_data=train_dataloader,
val_data=val_dataloader,
test_data=test_dataloader,
n_gpu=args.n_gpu,
)
if args.command == "train":
trainer.train()
if args.command == "test":
trainer.test()
if args.n_gpu > 1:
destroy_process_group()
if __name__ == "__main__":
args = parse_arguments()
run(args)