-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdbuf.cc
173 lines (152 loc) · 4.33 KB
/
dbuf.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
/* Double buffer for accelerator's memory module
Copyright (c) 2021 Amano laboratory, Keio University.
Author: Takuya Kojima
This file is part of CubeSim, a cycle accurate simulator for 3-D stacked system.
CubeSim is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
CubeSim is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with CubeSim. If not, see <https://www.gnu.org/licenses/>.
*/
#include "dbuf.h"
#include "vmips.h"
#include "options.h"
#include "mmapglue.h"
#include <cstring>
DoubleBuffer::DoubleBuffer(size_t size, uint32 mask_, FILE *init_data)
: Range (0, size, 0, MEM_READ_WRITE), mask(mask_) {
front = new uint32[size / 4]();
back = new uint32[size / 4]();
if (init_data != NULL) {
std::memcpy((void*)front,
mmap(0, extent, PROT_READ, MAP_PRIVATE, fileno (init_data), ftell (init_data)),
get_file_size (init_data));
std::memcpy((void*)front,
mmap(0, extent, PROT_READ, MAP_PRIVATE, fileno (init_data), ftell (init_data)),
get_file_size (init_data));
}
address = static_cast<void *> (front);
front_connected = true;
}
DoubleBuffer::~DoubleBuffer() {
delete [] front;
delete [] back;
}
void DoubleBuffer::store_word(uint32 offset, uint32 data, DeviceExc *client)
{
uint32 *werd;
/* calculate address */
werd = ((uint32 *) address) + (offset / 4);
/* store word */
*werd = data & mask;
}
void DoubleBuffer::buf_switch() {
if (front_connected) {
address = static_cast<void *> (back);
front_connected = false;
} else {
address = static_cast<void *> (front);
front_connected = true;
}
}
uint32 DoubleBuffer::fetch_word_from_inner(uint32 offset)
{
if (offset / 4 >= extent) {
if (machine->opt->option("dbemsg")->flag) {
fprintf(stderr, "Internal access exceeds the mapped range at: 0x%X\n", offset);
}
return 0;
}
if (front_connected) {
return ((uint32 *)back)[offset / 4];
} else {
return ((uint32 *)front)[offset / 4];
}
}
void DoubleBuffer::store_word_from_inner(uint32 offset, uint32 data)
{
if (offset / 4 >= extent) {
if (machine->opt->option("dbemsg")->flag) {
fprintf(stderr, "Internal access exceeds the mapped range at: 0x%X\n", offset);
}
return ;
}
uint32 *werd;
/* calculate address */
if (front_connected) {
werd = ((uint32 *) back) + (offset / 4);
} else {
werd = ((uint32 *) front) + (offset / 4);
}
/* store word */
*werd = data & mask;
}
uint16 DoubleBuffer::fetch_half_from_inner(uint32 offset)
{
if (offset / 4 >= extent) {
if (machine->opt->option("dbemsg")->flag) {
fprintf(stderr, "Internal access exceeds the mapped range at: 0x%X\n", offset);
}
return 0;
}
if (front_connected) {
return ((uint16 *)back)[offset / 2];
} else {
return ((uint16 *)front)[offset / 2];
}
}
void DoubleBuffer::store_half_from_inner(uint32 offset, uint16 data)
{
if (offset / 4 >= extent) {
if (machine->opt->option("dbemsg")->flag) {
fprintf(stderr, "Internal access exceeds the mapped range at: 0x%X\n", offset);
}
return ;
}
uint16 *werd;
/* calculate address */
if (front_connected) {
werd = ((uint16 *) back) + (offset / 2);
} else {
werd = ((uint16 *) front) + (offset / 2);
}
/* store word */
*werd = data & mask;
}
uint8 DoubleBuffer::fetch_byte_from_inner(uint32 offset)
{
if (offset / 4 >= extent) {
if (machine->opt->option("dbemsg")->flag) {
fprintf(stderr, "Internal access exceeds the mapped range at: 0x%X\n", offset);
}
return 0;
}
if (front_connected) {
return ((uint8 *)back)[offset];
} else {
return ((uint8 *)front)[offset];
}
}
void DoubleBuffer::store_byte_from_inner(uint32 offset, uint8 data)
{
if (offset / 4 >= extent) {
if (machine->opt->option("dbemsg")->flag) {
fprintf(stderr, "Internal access exceeds the mapped range at: 0x%X\n", offset);
}
return ;
}
uint8 *werd;
/* calculate address */
if (front_connected) {
werd = ((uint8 *) back) + offset;
} else {
werd = ((uint8 *) front) + offset;
}
/* store word */
*werd = data & mask;
}