-
Notifications
You must be signed in to change notification settings - Fork 122
/
Copy pathcocoval_gtclsjson_generation.py
189 lines (158 loc) · 7.81 KB
/
cocoval_gtclsjson_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import argparse
import datetime
import json
import random
import time
from pathlib import Path
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import argparse
import datetime
import json
import random
import time
from pathlib import Path
import os
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, DistributedSampler
import datasets
import util.misc as utils
from models import build_model as build_yolos_model
from datasets import build_dataset, get_coco_api_from_dataset
# from timm.scheduler import create_scheduler
# from new_models import build_model
from util.scheduler import create_scheduler
from datasets.coco_eval import CocoEvaluator
from util import box_ops
import torch.nn.functional as F
@torch.no_grad()
def get_val_json(data_loader, base_ds, device, output_dir, args):
jdict = []
for samples, targets in data_loader:
# samples = samples.to(device)
# import pdb;pdb.set_trace()
targets = [{k: v for k, v in t.items()} for t in targets]
for target in targets:
labels = target['labels'].tolist()
for label in labels:
jdict.append({'category_id': int(label)})
output_json = os.path.join(output_dir, "coco-valsplit-cls-dist.json")
with open(output_json, 'w') as f:
json.dump(jdict, f)
# for target, output in zip(targets, results):
# jdict
print("%s done" % output_json)
return
def get_args_parser():
parser = argparse.ArgumentParser('Set YOLOS', add_help=False)
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--lr_backbone', default=1e-5, type=float)
parser.add_argument('--batch_size', default=2, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--epochs', default=150, type=int)
parser.add_argument('--eval_size', default=800, type=int)
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
# scheduler
# Learning rate schedule parameters
parser.add_argument('--sched', default='warmupcos', type=str, metavar='SCHEDULER',
help='LR scheduler (default: "step", options:"step", "warmupcos"')
## step
parser.add_argument('--lr_drop', default=100, type=int)
## warmupcosine
# parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
# help='learning rate noise on/off epoch percentages')
# parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
# help='learning rate noise limit percent (default: 0.67)')
# parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
# help='learning rate noise std-dev (default: 1.0)')
parser.add_argument('--warmup-lr', type=float, default=1e-6, metavar='LR',
help='warmup learning rate (default: 1e-6)')
parser.add_argument('--min-lr', type=float, default=1e-7, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument('--warmup-epochs', type=int, default=0, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
help='LR decay rate (default: 0.1)')
# * model setting
parser.add_argument("--det_token_num", default=100, type=int,
help="Number of det token in the deit backbone")
parser.add_argument('--backbone_name', default='tiny', type=str,
help="Name of the deit backbone to use")
parser.add_argument('--pre_trained', default='',
help="set imagenet pretrained model path if not train yolos from scatch")
parser.add_argument('--init_pe_size', nargs='+', type=int,
help="init pe size (h,w)")
parser.add_argument('--mid_pe_size', nargs='+', type=int,
help="mid pe size (h,w)")
# * Matcher
parser.add_argument('--set_cost_class', default=1, type=float,
help="Class coefficient in the matching cost")
parser.add_argument('--set_cost_bbox', default=5, type=float,
help="L1 box coefficient in the matching cost")
parser.add_argument('--set_cost_giou', default=2, type=float,
help="giou box coefficient in the matching cost")
# * Loss coefficients
parser.add_argument('--dice_loss_coef', default=1, type=float)
parser.add_argument('--bbox_loss_coef', default=5, type=float)
parser.add_argument('--giou_loss_coef', default=2, type=float)
parser.add_argument('--eos_coef', default=0.1, type=float,
help="Relative classification weight of the no-object class")
# dataset parameters
parser.add_argument('--dataset_file', default='coco')
parser.add_argument('--coco_path', type=str)
parser.add_argument('--coco_panoptic_path', type=str)
parser.add_argument('--remove_difficult', action='store_true')
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true')
parser.add_argument('--num_workers', default=2, type=int)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
return parser
def main(args):
utils.init_distributed_mode(args)
# print("git:\n {}\n".format(utils.get_sha()))
print(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# import pdb;pdb.set_trace()
dataset_train = build_dataset(image_set='train', args=args)
dataset_val = build_dataset(image_set='val', args=args)
# import pdb;pdb.set_trace()
if args.distributed:
sampler_train = DistributedSampler(dataset_train)
sampler_val = DistributedSampler(dataset_val, shuffle=False)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
batch_sampler_train = torch.utils.data.BatchSampler(
sampler_train, args.batch_size, drop_last=True)
data_loader_train = DataLoader(dataset_train, batch_sampler=batch_sampler_train,
collate_fn=utils.collate_fn, num_workers=args.num_workers)
data_loader_val = DataLoader(dataset_val, args.batch_size, sampler=sampler_val,
drop_last=False, collate_fn=utils.collate_fn, num_workers=args.num_workers)
base_ds = get_coco_api_from_dataset(dataset_val)
output_dir = Path(args.output_dir)
get_val_json(data_loader_val, base_ds, device, args.output_dir, args)
return
if __name__ == '__main__':
parser = argparse.ArgumentParser('Get YOLOS pred json file', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)