-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsetrun.py
executable file
·518 lines (386 loc) · 16.8 KB
/
setrun.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
# encoding: utf-8
"""
Module to set up run time parameters for Clawpack.
The values set in the function setrun are then written out to data files
that will be read in by the Fortran code.
"""
from __future__ import absolute_import
from __future__ import print_function
import os
import datetime
import shutil
import gzip
import numpy as np
from clawpack.geoclaw.surge.storm import Storm
import clawpack.clawutil as clawutil
from clawpack.geoclaw import topotools
from clawpack.geoclaw import fgmax_tools
#from clawpack.geoclaw.data import ForceDry
# Time Conversions
def days2seconds(days):
return days * 60.0**2 * 24.0
# Scratch directory for storing topo and dtopo files:
topodir = os.path.join(os.getcwd(), 'bathtopo')
# topolist
topoflist = {
"flat":"topo_flat.asc",
}
# ------------------------------
def setrun(claw_pkg='geoclaw'):
#------------------------------
"""
Define the parameters used for running Clawpack.
INPUT:
claw_pkg expected to be "geoclaw" for this setrun.
OUTPUT:
rundata - object of class ClawRunData
"""
from clawpack.clawutil import data
assert claw_pkg.lower() == 'geoclaw', "Expected claw_pkg = 'geoclaw'"
num_dim = 2
rundata = data.ClawRunData(claw_pkg, num_dim)
#------------------------------------------------------------------
# Problem-specific parameters to be written to setprob.data:
#------------------------------------------------------------------
#probdata = rundata.new_UserData(name='probdata',fname='setprob.data')
#------------------------------------------------------------------
# Standard Clawpack parameters to be written to claw.data:
# (or to amr2ez.data for AMR)
#------------------------------------------------------------------
clawdata = rundata.clawdata # initialized when rundata instantiated
# Set single grid parameters first.
# See below for AMR parameters.
# ---------------
# Spatial domain:
# ---------------
# Number of space dimensions:
clawdata.num_dim = num_dim
#
#topo_file = topotools.Topography(os.path.join(topodir, topoflist['flat']), topo_type=3)
# Lower and upper edge of computational domain:
#clawdata.lower[0] = topo_file.x[1] # west longitude
#clawdata.upper[0] = topo_file.x[-1] # east longitude
#clawdata.lower[1] = topo_file.y[1] # south latitude
#clawdata.upper[1] = topo_file.y[-1] # north latitude
# Number of grid cells
#clawdata.num_cells[0] = int((topo_file.x[-1]-topo_file.x[1])/topo_file.delta[0]) # nx
#clawdata.num_cells[1] = int((topo_file.y[-1]-topo_file.y[1])/topo_file.delta[1]) # ny
# Lower and upper edge of computational domain:
clawdata.lower[0] = 0.0 # west longitude
clawdata.upper[0] = 3.6 # east longitude
clawdata.lower[1] = -1.8 # south latitude
clawdata.upper[1] = 1.8 # north latitude
# Number of grid cells:
clawdata.num_cells[0] = 40
clawdata.num_cells[1] = 40
# ---------------
# Size of system:
# ---------------
# Number of equations in the system:
clawdata.num_eqn = 3
# Number of auxiliary variables in the aux array (initialized in setaux)
# First three are from shallow GeoClaw, fourth is friction and last 3 are
# storm fields
clawdata.num_aux = 3 + 1 + 3
# Index of aux array corresponding to capacity function, if there is one:
clawdata.capa_index = 2 # 0 for cartesian x-y, 2 for spherical lat-lon
# -------------
# Initial time:
# -------------
clawdata.t0 = 0.0
# Restart from checkpoint file of a previous run?
# If restarting, t0 above should be from original run, and the
# restart_file 'fort.chkNNNNN' specified below should be in
# the OUTDIR indicated in Makefile.
clawdata.restart = False # True to restart from prior results
clawdata.restart_file = 'fort.chk00006' # File to use for restart data
# -------------
# Output times:
#--------------
# Specify at what times the results should be written to fort.q files.
# Note that the time integration stops after the final output time.
# The solution at initial time t0 is always written in addition.
clawdata.output_style = 1
clawdata.tfinal = 48*3600.0
if clawdata.output_style==1:
# Output nout frames at equally spaced times up to tfinal:
clawdata.num_output_times = 24
clawdata.output_t0 = True # output at initial (or restart) time?
elif clawdata.output_style == 2:
# Specify a list of output times.
#clawdata.output_times = [0.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0]
clawdata.output_times = [i*3600.0 for i in range(0,122)]
elif clawdata.output_style == 3:
# Output every iout timesteps with a total of ntot time steps:
clawdata.output_step_interval = 1
clawdata.total_steps = 1
clawdata.output_t0 = True
clawdata.output_format = 'ascii' # 'ascii' or 'netcdf'
clawdata.output_q_components = 'all' # could be list such as [True,True]
clawdata.output_aux_components = 'all'
clawdata.output_aux_onlyonce = False # output aux arrays only at t0
# ---------------------------------------------------
# Verbosity of messages to screen during integration:
# ---------------------------------------------------
# The current t, dt, and cfl will be printed every time step
# at AMR levels <= verbosity. Set verbosity = 0 for no printing.
# (E.g. verbosity == 2 means print only on levels 1 and 2.)
clawdata.verbosity = 1
# --------------
# Time stepping:
# --------------
# if dt_variable==1: variable time steps used based on cfl_desired,
# if dt_variable==0: fixed time steps dt = dt_initial will always be used.
clawdata.dt_variable = True
# Initial time step for variable dt.
# If dt_variable==0 then dt=dt_initial for all steps:
clawdata.dt_initial = 0.02
# Max time step to be allowed if variable dt used:
clawdata.dt_max = 1e+99
#clawdata.dt_max = 6.0e+2
# Desired Courant number if variable dt used, and max to allow without
# retaking step with a smaller dt:
clawdata.cfl_desired = 0.50
clawdata.cfl_max = 0.90
# Maximum number of time steps to allow between output times:
clawdata.steps_max = 500000
# ------------------
# Method to be used:
# ------------------
# Order of accuracy: 1 => Godunov, 2 => Lax-Wendroff plus limiters
clawdata.order = 1
# Use dimensional splitting? (not yet available for AMR)
clawdata.dimensional_split = 'unsplit'
# For unsplit method, transverse_waves can be
# 0 or 'none' ==> donor cell (only normal solver used)
# 1 or 'increment' ==> corner transport of waves
# 2 or 'all' ==> corner transport of 2nd order corrections too
clawdata.transverse_waves = 1
# Number of waves in the Riemann solution:
clawdata.num_waves = 3
# List of limiters to use for each wave family:
# Required: len(limiter) == num_waves
# Some options:
# 0 or 'none' ==> no limiter (Lax-Wendroff)
# 1 or 'minmod' ==> minmod
# 2 or 'superbee' ==> superbee
# 3 or 'mc' ==> MC limiter
# 4 or 'vanleer' ==> van Leer
clawdata.limiter = ['mc', 'mc', 'mc']
clawdata.use_fwaves = True # True ==> use f-wave version of algorithms
# Source terms splitting:
# src_split == 0 or 'none' ==> no source term (src routine never called)
# src_split == 1 or 'godunov' ==> Godunov (1st order) splitting used,
# src_split == 2 or 'strang' ==> Strang (2nd order) splitting used, not recommended.
clawdata.source_split = 'godunov'
# clawdata.source_split = 'strang'
# --------------------
# Boundary conditions:
# --------------------
# Number of ghost cells (usually 2)
clawdata.num_ghost = 4
# Choice of BCs at xlower and xupper:
# 0 => user specified (must modify bcN.f to use this option)
# 1 => extrapolation (non-reflecting outflow)
# 2 => periodic (must specify this at both boundaries)
# 3 => solid wall for systems where q(2) is normal velocity
clawdata.bc_lower[0] = 'extrap' # west
clawdata.bc_upper[0] = 'extrap' # east
clawdata.bc_lower[1] = 'wall' # south
clawdata.bc_upper[1] = 'wall' # north
# Specify when checkpoint files should be created that can be
# used to restart a computation.
clawdata.checkpt_style = 0
if clawdata.checkpt_style == 0:
# Do not checkpoint at all
pass
elif np.abs(clawdata.checkpt_style) == 1:
# Checkpoint only at tfinal.
pass
elif np.abs(clawdata.checkpt_style) == 2:
# Specify a list of checkpoint times.
clawdata.checkpt_times = [0.1, 0.15]
elif np.abs(clawdata.checkpt_style) == 3:
# Checkpoint every checkpt_interval timesteps (on Level 1)
# and at the final time.
clawdata.checkpt_interval = 5
# ---------------
# AMR parameters:
# ---------------
amrdata = rundata.amrdata
# max number of refinement levels:
amrdata.amr_levels_max = 3
# List of refinement ratios at each level (length at least mxnest-1)
amrdata.refinement_ratios_x = [3,3]
amrdata.refinement_ratios_y = [3,3]
amrdata.refinement_ratios_t = [3,3]
# Specify type of each aux variable in amrdata.auxtype.
# This must be a list of length maux, each element of which is one of:
# 'center', 'capacity', 'xleft', or 'yleft' (see documentation).
amrdata.aux_type = ['center','capacity','yleft','center','center','center','center', 'center', 'center'] # For lon-lat
#amrdata.aux_type = ['center','center','yleft','center','center','center','center', 'center', 'center'] # For X-Y
# Flag using refinement routine flag2refine rather than richardson error
amrdata.flag_richardson = False # use Richardson?
amrdata.flag2refine = True
# steps to take on each level L between regriddings of level L+1:
amrdata.regrid_interval = 3
# width of buffer zone around flagged points:
# (typically the same as regrid_interval so waves don't escape):
amrdata.regrid_buffer_width = 3
# clustering alg. cutoff for (# flagged pts) / (total # of cells refined)
# (closer to 1.0 => more small grids may be needed to cover flagged cells)
amrdata.clustering_cutoff = 0.700000
# print info about each regridding up to this level:
amrdata.verbosity_regrid = 0
# ----- For developers -----
# Toggle debugging print statements:
amrdata.dprint = False # print domain flags
amrdata.eprint = False # print err est flags
amrdata.edebug = False # even more err est flags
amrdata.gprint = False # grid bisection/clustering
amrdata.nprint = True # proper nesting output
amrdata.pprint = False # proj. of tagged points
amrdata.rprint = False # print regridding summary
amrdata.sprint = False # space/memory output
amrdata.tprint = True # time step reporting each level
amrdata.uprint = False # update/upbnd reporting
# More AMR parameters can be set -- see the defaults in pyclaw/data.py
# == setregions.data values ==
#regions = rundata.regiondata.regions
# to specify regions of refinement append lines of the form
# [minlevel,maxlevel,t1,t2,x1,x2,y1,y2]
# gauges
rundata.gaugedata.gauges.append([1, 2.5, 0.0, 0., 1.e10])
rundata.gaugedata.gauges.append([2, 1.5, 0.0, 0., 1.e10])
rundata.gaugedata.gauges.append([3, 0.5, 0.0, 0., 1.e10])
#------------------------------------------------------------------
# GeoClaw specific parameters:
#------------------------------------------------------------------
rundata = setgeo(rundata)
return rundata
# end of function setrun
# ----------------------
#-------------------
def setgeo(rundata):
#-------------------
"""
Set GeoClaw specific runtime parameters.
For documentation see ....
"""
try:
geo_data = rundata.geo_data
except:
print("*** Error, this rundata has no geo_data attribute")
raise AttributeError("Missing geo_data attribute")
# == Physics ==
geo_data.gravity = 9.80
geo_data.coordinate_system = 2 # lonlat
#geo_data.coordinate_system = 1 # XY
geo_data.earth_radius = 6367.5e3
geo_data.rho = 1025.0
geo_data.rho_air = 1.15
geo_data.ambient_pressure = 101.3e3 # Nominal atmos pressure
# == Forcing Options
geo_data.coriolis_forcing = True
geo_data.friction_forcing = True
geo_data.manning_coefficient = 0.025 # Overridden below
geo_data.friction_depth = 1e10
# == Algorithm and Initial Conditions ==
geo_data.sea_level = 0.0
geo_data.dry_tolerance = 1.e-2
# Refinement Criteria
refine_data = rundata.refinement_data
refine_data.wave_tolerance = 0.20
refine_data.speed_tolerance = [0.25, 0.50, 0.75, 1.00]
refine_data.deep_depth = 1.0e3
refine_data.max_level_deep = 1
refine_data.variable_dt_refinement_ratios = True
# == settopo.data values ==
topo_data = rundata.topo_data
topo_data.topofiles = []
# for topography, append lines of the form
# [topotype, minlevel, maxlevel, t1, t2, fname]
# See regions for control over these regions, need better bathy data for the
# smaller domains
topo_data.topofiles.append([3, 1, 3, rundata.clawdata.t0, rundata.clawdata.tfinal, os.path.join(topodir, topoflist['flat'])])
# == setdtopo.data values ==
dtopo_data = rundata.dtopo_data
dtopo_data.dtopofiles = []
# for moving topography, append lines of the form : (<= 1 allowed for now!)
# [topotype, minlevel,maxlevel,fname]
# == setqinit.data values ==
rundata.qinit_data.qinit_type = 0
rundata.qinit_data.qinitfiles = []
# for qinit perturbations, append lines of the form: (<= 1 allowed for now!)
# [minlev, maxlev, fname]
# NEW feature to force dry land some locations below sea level:
# == setfixedgrids.data values ==
rundata.fixed_grid_data.fixedgrids = []
# for fixed grids append lines of the form
# [t1,t2,noutput,x1,x2,y1,y2,xpoints,ypoints,\
# ioutarrivaltimes,ioutsurfacemax]
# == fgmax.data values ==
fgmax_files = rundata.fgmax_data.fgmax_files
# Points on a uniform 2d grid:
# Domain 4
topo_file = topotools.Topography(os.path.join(topodir, topoflist['flat']), topo_type=3)
fg = fgmax_tools.FGmaxGrid()
fg.point_style = 2 # uniform rectangular x-y grid
fg.dx = topo_file.delta[0] # desired resolution of fgmax grid
fg.x1 = topo_file.x[0]
fg.x2 = topo_file.x[-1]
fg.y1 = topo_file.y[0]
fg.y2 = topo_file.y[-1]
fg.min_level_check = 1 # which levels to monitor max on
fg.arrival_tol = 1.0e-1
fg.tstart_max = 0.0 # just before wave arrives
fg.tend_max = 1.e10 # when to stop monitoring max values
fg.dt_check = 1.0 # how often to update max values
fg.interp_method = 0 # 0 ==> pw const in cells, recommended
rundata.fgmax_data.fgmax_grids.append(fg) # written to fgmax_grids.data
# num_fgmax_val
rundata.fgmax_data.num_fgmax_val = 5 # 1 to save depth, 2 to save depth and speed, and 5 to Save depth, speed, momentum, momentum flux and hmin
# ================
# Set Surge Data
# ================
data = rundata.surge_data
# Source term controls - These are currently not respected
data.wind_forcing = True
#data.drag_law = 1
data.drag_law = 4 # Mitsuyasu & Kusaba no limit drag coeff
data.pressure_forcing = True
# AMR parameters
#data.wind_refine = [10.0, 20.0, 30.0, 40.0] # m/s
#data.R_refine = [200.0e3, 100.0e3, 50.0e3, 25.0e3] # m
data.wind_refine = False # m/s
data.R_refine = False # m
# Storm parameters
#data.storm_type = 1 # Type of storm
data.storm_type = -1 # Explicit storm fields. See ./wrf_storm_module.f90
data.storm_specification_type = 'WRF'
data.display_landfall_time = True
# Storm type 2 - Idealized storm track
data.storm_file = os.path.join(os.getcwd(),'forcing/')
# =======================
# Set Variable Friction
# =======================
data = rundata.friction_data
# Variable friction
data.variable_friction = True
# Region based friction
# Entire domain
data.friction_regions.append([rundata.clawdata.lower,
rundata.clawdata.upper,
[np.infty,0.0,-np.infty],
[0.030, 0.022]])
return rundata
# end of function setgeo
# ----------------------
if __name__ == '__main__':
# Set up run-time parameters and write all data files.
import sys
if len(sys.argv) == 2:
rundata = setrun(sys.argv[1])
else:
rundata = setrun()
rundata.write()