-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGlicko2.py
182 lines (133 loc) · 5.65 KB
/
Glicko2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
from RankingSettings import DefaultRating, DefaultRD, DefaultVol
"""
Copyright (c) 2009 Ryan Kirkman
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
"""
from math import *
class Player:
# Class attribute
# The system constant, which constrains
# the change in volatility over time.
_tau = 0.5
def getRating(self):
return (self.__rating * 173.7178) + 1500
def setRating(self, rating):
self.__rating = (rating - 1500) / 173.7178
rating = property(getRating, setRating)
def getRd(self):
return self.__rd * 173.7178
def setRd(self, rd):
self.__rd = rd / 173.7178
rd = property(getRd, setRd)
def __init__(self, rating = DefaultRating, rd = DefaultRD, vol = DefaultVol):
# For testing purposes, preload the values
# assigned to an unrated player.
self.setRating(rating)
self.setRd(rd)
self.vol = vol
def _preRatingRD(self):
""" Calculates and updates the player's rating deviation for the
beginning of a rating period.
preRatingRD() -> None
"""
self.__rd = sqrt(pow(self.__rd, 2) + pow(self.vol, 2))
def update_player(self, rating_list, RD_list, outcome_list):
""" Calculates the new rating and rating deviation of the player.
update_player(list[int], list[int], list[bool]) -> None
"""
# Convert the rating and rating deviation values for internal use.
rating_list = [(x - 1500) / 173.7178 for x in rating_list]
RD_list = [x / 173.7178 for x in RD_list]
v = self._v(rating_list, RD_list)
self.vol = self._newVol(rating_list, RD_list, outcome_list, v)
self._preRatingRD()
self.__rd = 1 / sqrt((1 / pow(self.__rd, 2)) + (1 / v))
tempSum = 0
for i in range(len(rating_list)):
tempSum += self._g(RD_list[i]) * \
(outcome_list[i] - self._E(rating_list[i], RD_list[i]))
self.__rating += pow(self.__rd, 2) * tempSum
def _f(self, x, a, rating_list, RD_list, outcome_list, v):
nominator_1 = exp(x)*(self._delta(rating_list, RD_list, outcome_list, v)**2-self.__rating**2-v-exp(x))
denominator_1 = 2*(self.__rating**2 + v + exp(x))**2
term_1 = nominator_1/denominator_1
term_2 = (x-a)/self._tau**2
return term_1-term_2
def _newVol(self, rating_list, RD_list, outcome_list, v):
""" Calculating the new volatility as per the Glicko2 system.
_newVol(list, list, list) -> float
"""
A = a = log(self.vol**2)
epsilon = 0.000001
delta_squared = self._delta(rating_list, RD_list, outcome_list, v) ** 2
if delta_squared > (self.__rating ** 2 + v):
B = log(delta_squared - self.__rating ** 2 - v)
else:
k = 1
while self._f(a - k * self._tau, a, rating_list, RD_list, outcome_list, v) < 0:
k += 1
B = a - k * self._tau
f_A = self._f(A, a, rating_list, RD_list, outcome_list, v)
f_B = self._f(B, a, rating_list, RD_list, outcome_list, v)
while abs(B - A) > epsilon:
C = A + ((A - B) * f_A) / (f_B - f_A)
f_C = self._f(C, a, rating_list, RD_list, outcome_list, v)
if f_C * f_B < 0:
A = B
f_A = f_B
else:
f_A /= 2
B = C
f_B = f_C
return exp(A / 2)
def _delta(self, rating_list, RD_list, outcome_list, v):
""" The delta function of the Glicko2 system.
_delta(list, list, list) -> float
"""
tempSum = 0
for i in range(len(rating_list)):
tempSum += self._g(RD_list[i]) * (outcome_list[i] - self._E(rating_list[i], RD_list[i]))
return v * tempSum
def _v(self, rating_list, RD_list):
""" The v function of the Glicko2 system.
_v(list[int], list[int]) -> float
"""
tempSum = 0
for i in range(len(rating_list)):
tempE = self._E(rating_list[i], RD_list[i])
tempSum += pow(self._g(RD_list[i]), 2) * tempE * (1 - tempE)
return 1 / tempSum
def _E(self, p2rating, p2RD):
""" The Glicko E function.
_E(int) -> float
"""
return 1 / (1 + exp(-1 * self._g(p2RD) * \
(self.__rating - p2rating)))
def _g(self, RD):
""" The Glicko2 g(RD) function.
_g() -> float
"""
return 1 / sqrt(1 + 3 * pow(RD, 2) / pow(pi, 2))
def did_not_compete(self):
""" Applies Step 6 of the algorithm. Use this for
players who did not compete in the rating period.
did_not_compete() -> None
"""
self._preRatingRD()