-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpca_rbf_svm.py
executable file
·114 lines (85 loc) · 3.7 KB
/
pca_rbf_svm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import pandas as pd
import os, timeit, socket, time, pickle
from sklearn.svm import SVC, LinearSVC
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score
from sklearn.decomposition import PCA
from sklearn.externals import joblib
from sklearn.model_selection import GridSearchCV
from sklearn.ensemble import AdaBoostClassifier
from sklearn.ensemble import BaggingClassifier
data_path = './'
train_file = os.path.join(data_path, 'train_data.h5')
test_file = os.path.join(data_path, 'test_data.h5')
pca_n_components = 40
encoding_method = 'pca'
def load_data():
print('start loading data...')
train_data = pd.HDFStore(train_file)
X_train = train_data['rpkm'].values
y_train = train_data['labels'].values
train_data.close()
test_data = pd.HDFStore(test_file)
X_test = test_data['rpkm'].values
y_test = test_data['labels'].values
test_data.close()
print("start %s transformation..." % encoding_method)
cache_file_name = "models/%s_%d_std.model" % (encoding_method, pca_n_components)
encoder = pickle.load(open(cache_file_name, "rb"))
X_train = encoder.transform(X_train)
X_test = encoder.transform(X_test)
return X_train, X_test, y_train, y_test
def do_SVM(X_train, X_test, y_train, y_test):
start_time = timeit.default_timer()
print('training...')
clf = SVC(kernel='rbf', C=1, gamma=0.01, random_state=10701, decision_function_shape='ovr', cache_size=1000)
clf.fit(X_train, y_train)
mid_time = timeit.default_timer()
print('testing...')
y_pred = clf.predict(X_test)
end_time = timeit.default_timer()
print("finish SVM")
print("train time: %s" % str(mid_time - start_time))
print("testing time %s" % str(end_time - mid_time))
acc = accuracy_score(y_test, y_pred)
print("accuracy: {:.4f}".format(acc))
# joblib.dump(clf, "models/svm_{:.4f}.pkl".format(acc))
def do_ada_boost(X_train, X_test, y_train, y_test):
start_time = timeit.default_timer()
print('training...')
clf = SVC(kernel='rbf', C=1, gamma=0.01, probability=True, random_state=10701, decision_function_shape='ovr', cache_size=1000)
model = AdaBoostClassifier(clf, n_estimators=50, algorithm='SAMME.R')
model.fit(X_train, y_train)
mid_time = timeit.default_timer()
print('testing...')
y_pred = model.predict(X_test)
end_time = timeit.default_timer()
print("finish Adaboost")
print("train time: %s" % str(mid_time - start_time))
print("testing time %s" % str(end_time - mid_time))
acc = accuracy_score(y_test, y_pred)
print("accuracy using Adaboost is %g" % acc)
pickle.dump(mode, "models/Adaboost_50.model")
def do_bagging_boost(X_train, X_test, y_train, y_test):
start_time = timeit.default_timer()
print('training...')
clf = SVC(kernel='rbf', C=1, gamma=0.01, random_state=10701, decision_function_shape='ovr', cache_size=1000)
bdt = BaggingClassifier(clf)
bdt.fit(X_train, y_train)
mid_time = timeit.default_timer()
print('testing...')
y_pred = bdt.predict(X_test)
end_time = timeit.default_timer()
print("finish bagging boost")
print("train time: %s" % str(mid_time - start_time))
print("testing time %s" % str(end_time - mid_time))
acc = accuracy_score(y_test, y_pred)
print("accuracy using Adaboost is %g" % acc)
def main():
X_train, X_test, y_train, y_test = load_data()
# do_SVM(X_train, X_test, y_train, y_test)
do_ada_boost(X_train, X_test, y_train, y_test)
# do_bagging_boost(X_train, X_test, y_train, y_test)
if __name__ == '__main__':
main()