From 0f9ff0eabbd509b77b9e2b0c8e92702638da7e9f Mon Sep 17 00:00:00 2001 From: Eirenne Date: Sun, 29 Jan 2023 15:11:24 +0000 Subject: [PATCH] Submission --- part1.py | 104 +++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 104 insertions(+) create mode 100644 part1.py diff --git a/part1.py b/part1.py new file mode 100644 index 0000000..877dd4d --- /dev/null +++ b/part1.py @@ -0,0 +1,104 @@ +import qiskit as qk +import matplotlib.pyplot as plt +import numpy as np +from collections import defaultdict + +from qiskit import QuantumCircuit, Aer, IBMQ +from qiskit import transpile, assemble +from qiskit.tools.jupyter import * +from qiskit.visualization import plot_histogram +from math import pi, ceil + + +def bitfield(n): + return [1 if digit=='1' else 0 for digit in bin(n)[2:]] + +def angle(img): + normal = np.max(img) + theta = (np.pi/2) / normal * img + return theta + + +# accepts square matrix +def encoder(img): + N = len(img) + thetas = angle(img) + + qunum = ceil(np.log2(N*N)) + 1 + qc = QuantumCircuit(qunum) + + for i in range(qunum): + qc.h(i) + + qc.barrier() + + binary = prev_binary = 0 + + for i in range(N): + for j in range(N): + change = bitfield(binary^prev_binary)[:qunum] + for k, n in enumerate(change): + n and qc.x(k) + + qc.mcry(thetas[i][j], [l for l in range(qunum - 1)], qunum - 1) + + qc.barrier() + # increment to next pixel + prev_binary = binary + binary += 1 + + qc.measure_all() + + return qc + +def simulate(qc): + aer_sim = Aer.get_backend('aer_simulator') + t_qc1 = transpile(qc, aer_sim) + qobj = assemble(t_qc1, shots=8192*256) + result = aer_sim.run(qobj).result() + counts = result.get_counts(qc) + + return counts + + +def decoder(histogram): + new_dict = defaultdict(lambda: np.zeros(2)) + + for key, value in histogram.items(): + new_dict[key[1:]][int(key[0],2)] = value + + N = 32 + image = np.zeros([N, N]) + + for key, val in new_dict.items(): + val/=sum(val) + + a, b = divmod(int(key,2), N) + + image[a][b] = np.arccos(np.sqrt(val[0])) + + return image + +def run_part1(image): + N_orig = len(image) + + img = np.zeros([32,32]) + + for i in range(N_orig): + for j in range(N_orig): + img[i][j] = image[i][j] + + N = len(img) + + plt.imshow(img[0:N,0:N]) + plt.show() + + qc = encoder(img) + + histogram = simulate(qc) + + image = decoder(histogram) + + plt.imshow(image) + plt.show() + return image[:N_orig, :N_orig]