-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprNet_.py
57 lines (48 loc) · 2.11 KB
/
prNet_.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import numpy as np
import os
from glob import glob
import scipy.io as sio
from skimage.io import imread, imsave
from skimage.transform import rescale, resize
from time import time
import argparse
import ast
import matplotlib.pyplot as plt
import argparse
from utils.render import render_texture
import cv2
def prnet_(prn, image, ref_image):
[h, w, _] = image.shape
pos = prn.process(image)
pos_0 = pos[0]
pos_refer = pos[1]
if pos is None:
return None, image
if len(pos) == 2:
output = prNet(prn, image, ref_image, pos_0, pos_refer, h, w)
output = prNet(prn, output, ref_image, pos_refer, pos_0, h, w)
else:
return None, image
return pos, output
def prNet(prn, image, ref_image, pos, ref_pos, h, w):
vertices = prn.get_vertices(pos)
image = image/255.
texture = cv2.remap(image, pos[:,:,:2].astype(np.float32), None, interpolation=cv2.INTER_NEAREST, borderMode=cv2.BORDER_CONSTANT,borderValue=(0))
ref_image = ref_image/255.
ref_texture = cv2.remap(ref_image, ref_pos[:,:,:2].astype(np.float32), None, interpolation=cv2.INTER_NEAREST, borderMode=cv2.BORDER_CONSTANT,borderValue=(0))
ref_vertices = prn.get_vertices(ref_pos)
new_texture = ref_texture#(texture + ref_texture)/2.
#-- 3. remap to input image.(render)
vis_colors = np.ones((vertices.shape[0], 1))
face_mask = render_texture(vertices.T, vis_colors.T, prn.triangles.T, h, w, c = 1)
face_mask = np.squeeze(face_mask > 0).astype(np.float32)
new_colors = prn.get_colors_from_texture(new_texture)
new_image = render_texture(vertices.T, new_colors.T, prn.triangles.T, h, w, c = 3)
new_image = image*(1 - face_mask[:,:,np.newaxis]) + new_image*face_mask[:,:,np.newaxis]
# Possion Editing for blending image
vis_ind = np.argwhere(face_mask>0)
vis_min = np.min(vis_ind, 0)
vis_max = np.max(vis_ind, 0)
center = (int((vis_min[1] + vis_max[1])/2+0.5), int((vis_min[0] + vis_max[0])/2+0.5))
out = cv2.seamlessClone((new_image*255).astype(np.uint8), (image*255).astype(np.uint8), (face_mask*255).astype(np.uint8), center, cv2.NORMAL_CLONE)
return out