-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathparse.c
314 lines (298 loc) · 11.3 KB
/
parse.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
#include "parse.h"
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
static struct byte_string read_file(const char *filename)
{
struct byte_string contents;
FILE *f = fopen(filename, "rb");
if (!f)
return (struct byte_string){ 0, 0 };
fseek(f, 0, SEEK_END);
contents.length = ftell(f);
contents.bytes = malloc(contents.length);
fseek(f, 0, SEEK_SET);
fread(contents.bytes, contents.length, 1, f);
fclose(f);
return contents;
}
static unsigned char read_byte(struct byte_string *contents)
{
if (contents->length < 1)
return 0;
unsigned char value = contents->bytes[0];
contents->length--;
contents->bytes++;
return value;
}
static signed char read_signed_byte(struct byte_string *contents)
{
// this is probably overly pedantic, but it avoids signed overflow.
unsigned char value = read_byte(contents);
if (value <= SCHAR_MAX)
return value;
return -(signed char)((unsigned char)~value)-1;
}
static uint32_t read_uint32(struct byte_string *contents)
{
if (contents->length < 4)
return 0;
uint32_t value = contents->bytes[0] | (contents->bytes[1] << 8) |
(contents->bytes[2] << 16) | (contents->bytes[3] << 24);
contents->length -= 4;
contents->bytes += 4;
return value;
}
static int32_t read_int32(struct byte_string *contents)
{
uint32_t value = read_uint32(contents);
if (value <= INT32_MAX)
return value;
return -(int32_t)((uint32_t)~value)-1;
}
static int32_t read_uint64(struct byte_string *contents)
{
uint32_t lo = read_uint32(contents);
uint32_t hi = read_uint32(contents);
return (uint64_t)lo | ((uint64_t)hi << 32);
}
static struct byte_string read_string(struct byte_string *contents)
{
size_t len = 0;
int shift = 0;
while (contents->length > 0) {
unsigned char byte = read_byte(contents);
len |= (byte & 0x7f) << shift;
shift += 7;
if (!(byte & 0x80))
break;
}
if (contents->length < len)
len = contents->length;
struct byte_string value = { contents->bytes, len };
contents->length -= len;
contents->bytes += len;
return value;
}
static void parse_puzzle_molecule(struct byte_string *b, struct puzzle_molecule *molecule)
{
molecule->number_of_atoms = read_uint32(b);
molecule->atoms = calloc(molecule->number_of_atoms, sizeof(struct puzzle_atom));
for (uint32_t j = 0; j < molecule->number_of_atoms; ++j) {
molecule->atoms[j].type = read_byte(b);
molecule->atoms[j].offset[0] = read_signed_byte(b);
molecule->atoms[j].offset[1] = read_signed_byte(b);
}
molecule->number_of_bonds = read_uint32(b);
molecule->bonds = calloc(molecule->number_of_bonds, sizeof(struct puzzle_bond));
for (uint32_t j = 0; j < molecule->number_of_bonds; ++j) {
molecule->bonds[j].type = read_byte(b);
molecule->bonds[j].from[0] = read_signed_byte(b);
molecule->bonds[j].from[1] = read_signed_byte(b);
molecule->bonds[j].to[0] = read_signed_byte(b);
molecule->bonds[j].to[1] = read_signed_byte(b);
}
}
struct puzzle_file *parse_puzzle_byte_string(struct byte_string b)
{
struct puzzle_file *puzzle = calloc(1, sizeof(struct puzzle_file));
puzzle->bytes = b.bytes;
if (read_uint32(&b) != 3) {
free_puzzle_file(puzzle);
return 0;
}
puzzle->name = read_string(&b);
puzzle->creator = read_uint64(&b);
puzzle->parts_available = read_uint64(&b);
puzzle->number_of_inputs = read_uint32(&b);
puzzle->inputs = calloc(puzzle->number_of_inputs, sizeof(struct puzzle_molecule));
for (uint32_t i = 0; i < puzzle->number_of_inputs; ++i)
parse_puzzle_molecule(&b, &puzzle->inputs[i]);
puzzle->number_of_outputs = read_uint32(&b);
puzzle->outputs = calloc(puzzle->number_of_outputs, sizeof(struct puzzle_molecule));
for (uint32_t i = 0; i < puzzle->number_of_outputs; ++i)
parse_puzzle_molecule(&b, &puzzle->outputs[i]);
puzzle->output_scale = read_uint32(&b);
if (read_byte(&b)) {
struct puzzle_production_info *info = calloc(1, sizeof(struct puzzle_production_info));
puzzle->production_info = info;
info->shrink_left = read_byte(&b);
info->shrink_right = read_byte(&b);
info->isolate_inputs_from_outputs = read_byte(&b);
info->number_of_cabinets = read_uint32(&b);
info->cabinets = calloc(info->number_of_cabinets, sizeof(struct puzzle_cabinet));
for (uint32_t i = 0; i < info->number_of_cabinets; ++i) {
info->cabinets[i].position[0] = read_signed_byte(&b);
info->cabinets[i].position[1] = read_signed_byte(&b);
info->cabinets[i].type = read_string(&b);
}
info->number_of_conduits = read_uint32(&b);
info->conduits = calloc(info->number_of_conduits, sizeof(struct puzzle_conduit));
for (uint32_t i = 0; i < info->number_of_conduits; ++i) {
info->conduits[i].starting_position_a[0] = read_signed_byte(&b);
info->conduits[i].starting_position_a[1] = read_signed_byte(&b);
info->conduits[i].starting_position_b[0] = read_signed_byte(&b);
info->conduits[i].starting_position_b[1] = read_signed_byte(&b);
info->conduits[i].number_of_hexes = read_uint32(&b);
info->conduits[i].hexes = calloc(info->conduits[i].number_of_hexes, sizeof(struct puzzle_conduit_hex));
for (uint32_t j = 0; j < info->conduits[i].number_of_hexes; ++j) {
info->conduits[i].hexes[j].offset[0] = read_signed_byte(&b);
info->conduits[i].hexes[j].offset[1] = read_signed_byte(&b);
}
}
info->number_of_vials = read_uint32(&b);
info->vials = calloc(info->number_of_vials, sizeof(struct puzzle_vial));
for (uint32_t i = 0; i < info->number_of_vials; ++i) {
info->vials[i].position[0] = read_signed_byte(&b);
info->vials[i].position[1] = read_signed_byte(&b);
info->vials[i].style = read_byte(&b);
info->vials[i].count = read_uint32(&b);
}
}
return puzzle;
}
struct puzzle_file *parse_puzzle_file(const char *path)
{
struct byte_string b = read_file(path);
struct puzzle_file *puzzle = parse_puzzle_byte_string(b);
if (!puzzle) {
free(b.bytes);
return 0;
}
puzzle->owns_bytes = true;
return puzzle;
}
void free_puzzle_file(struct puzzle_file *puzzle)
{
if (!puzzle)
return;
for (uint32_t i = 0; i < puzzle->number_of_inputs; ++i) {
free(puzzle->inputs[i].atoms);
free(puzzle->inputs[i].bonds);
}
free(puzzle->inputs);
for (uint32_t i = 0; i < puzzle->number_of_outputs; ++i) {
free(puzzle->outputs[i].atoms);
free(puzzle->outputs[i].bonds);
}
free(puzzle->outputs);
if (puzzle->production_info) {
free(puzzle->production_info->cabinets);
for (uint32_t i = 0; i < puzzle->production_info->number_of_conduits; ++i)
free(puzzle->production_info->conduits[i].hexes);
free(puzzle->production_info->conduits);
free(puzzle->production_info->vials);
}
free(puzzle->production_info);
if (puzzle->owns_bytes)
free(puzzle->bytes);
free(puzzle);
}
struct solution_file *parse_solution_byte_string(struct byte_string b)
{
struct solution_file *solution = calloc(1, sizeof(struct solution_file));
solution->bytes = b.bytes;
if (read_uint32(&b) != 7) {
free_solution_file(solution);
return 0;
}
solution->puzzle = read_string(&b);
solution->name = read_string(&b);
if (read_uint32(&b)) {
solution->solved = true;
uint32_t zero = read_uint32(&b);
solution->cycles = read_uint32(&b);
uint32_t one = read_uint32(&b);
solution->cost = read_uint32(&b);
uint32_t two = read_uint32(&b);
solution->area = read_uint32(&b);
uint32_t three = read_uint32(&b);
solution->instructions = read_uint32(&b);
if (zero != 0 || one != 1 || two != 2 || three != 3) {
free_solution_file(solution);
return 0;
}
}
solution->number_of_parts = read_uint32(&b);
if (solution->number_of_parts > 9999) {
solution->number_of_parts = 0;
free_solution_file(solution);
return 0;
}
solution->parts = calloc(solution->number_of_parts, sizeof(struct solution_part));
for (uint32_t i = 0; i < solution->number_of_parts; ++i) {
struct solution_part *part = &solution->parts[i];
part->name = read_string(&b);
if (read_byte(&b) != 1) {
free_solution_file(solution);
return 0;
}
part->position[0] = read_int32(&b);
part->position[1] = read_int32(&b);
part->size = read_uint32(&b);
part->rotation = read_int32(&b);
part->which_input_or_output = read_uint32(&b);
part->number_of_instructions = read_uint32(&b);
if (part->number_of_instructions > 99999) {
free_solution_file(solution);
return 0;
}
part->instructions = calloc(part->number_of_instructions, sizeof(struct solution_instruction));
for (uint32_t j = 0; j < part->number_of_instructions; ++j) {
part->instructions[j].index = read_int32(&b);
part->instructions[j].instruction = read_byte(&b);
}
if (byte_string_is(part->name, "track")) {
part->number_of_track_hexes = read_uint32(&b);
if (part->number_of_track_hexes > 9999) {
free_solution_file(solution);
return 0;
}
part->track_hexes = calloc(part->number_of_track_hexes, sizeof(struct solution_hex_offset));
for (uint32_t j = 0; j < part->number_of_track_hexes; ++j) {
part->track_hexes[j].offset[0] = read_int32(&b);
part->track_hexes[j].offset[1] = read_int32(&b);
}
}
part->arm_number = read_uint32(&b);
if (byte_string_is(part->name, "pipe")) {
part->conduit_id = read_uint32(&b);
part->number_of_conduit_hexes = read_uint32(&b);
if (part->number_of_conduit_hexes > 9999) {
free_solution_file(solution);
return 0;
}
part->conduit_hexes = calloc(part->number_of_conduit_hexes, sizeof(struct solution_hex_offset));
for (uint32_t j = 0; j < part->number_of_conduit_hexes; ++j) {
part->conduit_hexes[j].offset[0] = read_int32(&b);
part->conduit_hexes[j].offset[1] = read_int32(&b);
}
}
}
return solution;
}
struct solution_file *parse_solution_file(const char *path)
{
struct byte_string b = read_file(path);
struct solution_file *solution = parse_solution_byte_string(b);
if (!solution) {
free(b.bytes);
return 0;
}
solution->owns_bytes = true;
return solution;
}
void free_solution_file(struct solution_file *solution)
{
if (!solution)
return;
for (uint32_t i = 0; i < solution->number_of_parts; ++i) {
free(solution->parts[i].instructions);
free(solution->parts[i].track_hexes);
free(solution->parts[i].conduit_hexes);
}
free(solution->parts);
if (solution->owns_bytes)
free(solution->bytes);
free(solution);
}