-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_g2p_model.py
247 lines (207 loc) · 11.4 KB
/
train_g2p_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import os
import warnings
import pandas as pd
import argparse
import torch
import torch.nn.parallel
import torch.distributed as dist
import torch.optim
import torch.multiprocessing as mp
import torch.utils.data
import torch.utils.data.distributed
from prettytable import PrettyTable
from src.model.model.genotype2phenotype_model import Genotype2PhenotypeModel
from src.utils.data import TreeParser
from src.utils.data.dataset import G2PDataset, G2PCollator
from src.utils.trainer import G2PTrainer
from torch.utils.data.dataloader import DataLoader
def count_parameters(model):
table = PrettyTable(["Modules", "Parameters", "Trainable"])
total_params = 0
for name, parameter in model.named_parameters():
params = parameter.numel()
#print(name, params, parameter.requires_grad)
table.add_row([name, params, parameter.requires_grad])
if parameter.requires_grad:
total_params+=params
print(table)
print(f"Total Trainable Params: {total_params}")
return total_params
def main():
parser = argparse.ArgumentParser(description='Some beautiful description')
parser.add_argument('--onto', help='Ontology file used to guide the neural network', type=str)
parser.add_argument('--subtree_order', help='Subtree cascading order', nargs='+', default=['default'])
parser.add_argument('--train', help='Training dataset', type=str)
parser.add_argument('--val', help='Validation dataset', type=str, default=None)
parser.add_argument('--test', help='Test dataset', type=str, default=None)
parser.add_argument('--system_embedding', default=None)
parser.add_argument('--gene_embedding', default=None)
parser.add_argument('--epochs', help='Training epochs for training', type=int, default=300)
parser.add_argument('--lr', help='Learning rate', type=float, default=0.001)
parser.add_argument('--wd', help='Weight decay', type=float, default=0.001)
parser.add_argument('--z_weight', help='Z weight for sampling', type=float, default=1.)
parser.add_argument('--hidden_dims', help='hidden dimension for model', default=256, type=int)
parser.add_argument('--dropout', help='dropout ratio', type=float, default=0.2)
parser.add_argument('--batch_size', help='Batch size', type=int, default=128)
parser.add_argument('--val_step', help='Batch size', type=int, default=20)
parser.add_argument('--cuda', help='Specify GPU', type=int, default=None)
parser.add_argument('--gene2id', help='Gene to ID mapping file', type=str)
parser.add_argument('--l2_lambda', help='l1 lambda for l1 loss', type=float, default=0.001)
parser.add_argument('--genotypes', help='Mutation information for cell lines', type=str)
parser.add_argument('--model', help='model trained', default=None)
parser.add_argument('--jobs', help="The number of threads", type=int, default=0)
parser.add_argument('--out', help="output model path")
parser.add_argument('--world-size', default=-1, type=int,
help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int,
help='node rank for distributed training')
parser.add_argument('--local_rank', default=1)
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
parser.add_argument('--multiprocessing-distributed', action='store_true',
help='Use multi-processing distributed training to launch '
'N processes per node, which has N GPUs. This is the '
'fastest way to use PyTorch for either single node or '
'multi node data parallel training')
parser.add_argument('--sys2cell', action='store_true', default=False)
parser.add_argument('--cell2sys', action='store_true', default=False)
parser.add_argument('--sys2gene', action='store_true', default=False)
args = parser.parse_args()
if args.cuda is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
args.gpu = args.cuda
if args.dist_url == "env://" and args.world_size == -1:
args.world_size = int(os.environ["WORLD_SIZE"])
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
ngpus_per_node = torch.cuda.device_count()
if args.multiprocessing_distributed:
# Since we have ngpus_per_node processes per node, the total world_size
# needs to be adjusted accordingly
args.world_size = ngpus_per_node * args.world_size
# Use torch.multiprocessing.spawn to launch distributed processes: the
# main_worker process function
print("The world size is %d"%args.world_size)
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
else:
# Simply call main_worker function
main_worker(args.gpu, ngpus_per_node, args)
def main_worker(gpu, ngpus_per_node, args):
global best_acc1
args.gpu = gpu
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
if args.distributed:
if args.dist_url == "env://" and args.rank == -1:
args.rank = int(os.environ["RANK"])
if args.multiprocessing_distributed:
# For multiprocessing distributed training, rank needs to be the
# global rank among all the processes
args.rank = args.rank * ngpus_per_node + gpu
print("GPU %d rank is %d" % (gpu, args.rank))
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
print("GPU %d process initialized" % (gpu))
torch.cuda.empty_cache()
args.genotypes = {genotype.split(":")[0]: genotype.split(":")[1] for genotype in args.genotypes.split(',')}
if torch.cuda.is_available():
device = torch.device("cuda:%d" % gpu)
else:
device = torch.device("cpu")
tree_parser = TreeParser(args.onto, args.gene2id)
if args.model is not None:
g2p_model = torch.load(args.model, map_location=device)
else:
g2p_model = Genotype2PhenotypeModel(tree_parser, list(args.genotypes.keys()), args.hidden_dims, dropout=args.dropout)
if not torch.cuda.is_available():
print('using CPU, this will be slow')
elif args.distributed:
# For multiprocessing distributed, DistributedDataParallel constructor
# should always set the single device scope, otherwise,
# DistributedDataParallel will use all available devices.
if args.gpu is not None:
#torch.cuda.set_device(args.gpu)
g2p_model.to(device)
# When using a single GPU per process and per
# DistributedDataParallel, we need to divide the batch size
# ourselves based on the total number of GPUs we have
args.batch_size = int(args.batch_size / ngpus_per_node)
args.jobs = int((args.jobs + ngpus_per_node - 1) / ngpus_per_node)
print(args.batch_size, args.jobs)
g2p_model = torch.nn.parallel.DistributedDataParallel(g2p_model, device_ids=[args.gpu], find_unused_parameters=True)
else:
print("Distributed training are set up")
g2p_model.to(device)
# DistributedDataParallel will divide and allocate batch_size to all
# available GPUs if device_ids are not set
g2p_model = torch.nn.parallel.DistributedDataParallel(g2p_model, find_unused_parameters=True)
elif args.gpu is not None:
#torch.cuda.set_device(args.gpu)
g2p_model = g2p_model.to(device)
print("Model is loaded at GPU(%d)" % args.gpu)
else:
# DataParallel will divide and allocate batch_size to all available GPUs
g2p_model = torch.nn.DataParallel(g2p_model).to(device)
if not args.multiprocessing_distributed or (args.multiprocessing_distributed
and args.rank % torch.cuda.device_count() == 0):
print("Summary of trainable parameters")
count_parameters(g2p_model)
fix_system = False
'''
if args.system_embedding:
system_embedding_dict = np.load(args.system_embedding, allow_pickle=True).item()
#print("Loading System Embeddings :", args.system_embedding)
#if "NEST" not in NeST_embedding_dict.keys():
# print("NEST root term does not exist!")
# system_embedding_dict["NEST"] = np.mean(
# np.stack([system_embedding_dict["NEST:1"], NeST_embedding_dict["NEST:2"], NeST_embedding_dict["NEST:3"]],
# axis=0), axis=0, keepdims=False)
system_embeddings = np.stack(
[system_embedding_dict[key] for key, value in sorted(tree_parser.system2ind.items(), key=lambda a: a[1])])
g2p_model.system_embedding.weight = nn.Parameter(torch.tensor(system_embeddings))
print(g2p_model.system_embedding.weight)
g2p_model.system_embedding.weight.requires_grad = False
fix_system = True
if args.gene_embedding:
gene_embedding_dict = np.load(args.gene_embedding, allow_pickle=True).item()
print("Loading Gene Embeddings :", args.gene_embedding)
gene_embeddings = np.stack([gene_embedding_dict[key] for key, value in sorted(tree_parser.gene2ind.items(), key=lambda a: a[1])])
g2p_model.gene_embedding.weight = nn.Parameter(torch.tensor(gene_embeddings))
#drug_response_model.gene_embedding.weight.requires_grad = False
'''
print("Summary of trainable parameters")
if args.sys2env:
print("Model will use Sys2Cell")
if args.env2sys:
print("Model will use Cell2Sys")
if args.sys2gene:
print("Model will use Sys2Gene")
train_dataset = pd.read_csv(args.train, header=None, sep='\t')
g2p_dataset = G2PDataset(train_dataset, args.genotypes, tree_parser)
g2p_collator = G2PCollator(list(args.genotypes.keys()))
if args.distributed:
#affinity_dataset = affinity_dataset.sample(frac=1).reset_index(drop=True)
interaction_sampler = torch.utils.data.distributed.DistributedSampler(g2p_dataset)
shuffle = False
else:
shuffle = True
interaction_sampler = None
g2p_dataloader = DataLoader(g2p_dataset, batch_size=args.batch_size, collate_fn=g2p_collator, num_workers = args.jobs, shuffle = shuffle, sampler = interaction_sampler)
if args.val is not None:
val_dataset = pd.read_csv(args.val, header=None, sep='\t')
val_g2p_dataset = G2PDataset(val_dataset, args.genotypes, tree_parser)
val_g2p_dataloader = DataLoader(val_g2p_dataset, shuffle=False, batch_size=args.batch_size,
num_workers=args.jobs, collate_fn=g2p_collator)
else:
val_g2p_dataloader = None
drug_response_trainer = G2PTrainer(g2p_model, g2p_dataloader, device, args,
validation_dataloader=val_g2p_dataloader, fix_system=fix_system)
drug_response_trainer.train(args.epochs, args.out)
if __name__ == '__main__':
main()