-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsinglegraph_svd_bss_gen_problem.m
171 lines (135 loc) · 3.31 KB
/
singlegraph_svd_bss_gen_problem.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
function [truth, model, y] = singlegraph_svd_bss_gen_problem(params)
data_distribution = DataDistribution.Normal;
shift_operator = ShiftOperator.Adjacency;
isignal_distribution = DataDistribution.Uniform;
filter_distribution = DataDistribution.HeatKernel;
shift_operator = ShiftOperator.Adjacency;
if ~exist('params', 'var')
params = struct;
end
if isfield(params, 'numFilters')
R = params.numFilters;
else
R = 3;
end
% Order of the filters (number of filter coefficients).
if isfield(params, 'L')
L = params.L;
else
L = 3;
end
% Number of nodes.
if isfield(params, 'N')
N = params.N;
else
N = 50;
end
% Number of non-zero input nodes.
if isfield(params, 'S')
S = params.S;
else
S = 3;
end
% Edge existence probability.
p = 0.1;
% Adjacency matrix.
model.G.W = generate_connected_ER(N, p);
% Graph Laplacian.
model.G.L = diag(sum(model.G.W))-model.G.W;
assert(issymmetric(model.G.W))
assert(issymmetric(model.G.L))
switch shift_operator
case ShiftOperator.Adjacency
model.G.S = model.G.W;
case ShiftOperator.Laplacian
model.G.S = model.G.L;
end
[model.G.V, Lambda, model.G.U] = eig(model.G.S);
model.G.lambda = diag(Lambda);
% Filter coefficients.
truth.h = zeros(L, R);
% Because of the way we are coming up with orthogonal vectors,
% which is fixed to three-dimensional vectors.
assert(L == 3)
% Because we are using three-dimensional vectors for the
% filter coefficients and they must be mutually orthogonal.
assert(2 <= R && R <= 3)
switch data_distribution
case DataDistribution.Normal
truth.h(:, 1) = randn(L, 1);
truth.h([1 2], 2) = randn(2, 1);
if R > 2
truth.h(1, 3) = randn;
end
case DataDistribution.Uniform
truth.h(:, 1) = rand(L, 1);
truth.h([1 2], 2) = rand(2, 1);
if R > 2
truth.h(1, 3) = rand;
end
end
truth.h(3, 2) = - (truth.h([1 2], 1)' * truth.h([1 2], 2)) / truth.h(3, 1);
if R > 2
truth.h([2 3], 3) = [truth.h([2 3], 1)'; truth.h([2 3], 2)'] \ ...
(-truth.h(1, 3) * [truth.h(1,1); truth.h(1,2)]);
end
for i = 1:R
truth.h(:, i) = truth.h(:, i) / norm(truth.h(:, i));
end
model.Psi = repmat(model.G.lambda, 1, L).^repmat(0:L-1, N, 1);
% Build filter matrices.
H = zeros(N, N * R);
for i = 1:R
Hi = truth.h(1, i)*eye(N);
for l = 1:L-1
Hi = Hi + truth.h(l+1, i)*model.G.S^l;
end
H(:, N*(i-1)+1:N*i) = Hi;
end
% Input.
truth.xSupport = zeros(R, S);
while true
for i = 1:R
truth.xSupport(i, :) = randperm(N, S);
end
empty_intersection = true;
for i = 1:R-1
for j = i+1:R
if ~isempty(intersect(truth.xSupport(i, :), truth.xSupport(j, :)))
empty_intersection = false;
end
end
end
if empty_intersection
break
end
end
truth.x = zeros(N, R);
switch data_distribution
case DataDistribution.Normal
for i = 1:R
truth.x(truth.xSupport(i, :), i) = randn(S, 1);
end
case DataDistribution.Uniform
for i = 1:R
truth.x(truth.xSupport(i, :), i) = rand(S, 1);
end
end
% Normalize input signals.
for i = 1:R
truth.x(:, i) = truth.x(:, i) / norm(truth.x(:, i), 1);
end
for i = 1:R-1
for j = i+1:R
assert(truth.x(:, i)' * truth.x(:, j) == 0)
assert(abs(truth.h(:, i)' * truth.h(:, j)) < 1e-10)
end
end
y = H*truth.x(:);
model.A = kr(model.Psi', model.G.U)';
truth.Zsum = zeros(N, L);
for i = 1:R
truth.Z{i} = truth.x(:, i)*truth.h(:, i)';
truth.Zsum = truth.Zsum + truth.Z{i};
end
end