forked from SimingYan/HPNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoption.py
194 lines (186 loc) · 7.34 KB
/
option.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import argparse
parser = argparse.ArgumentParser()
# data parameters
parser.add_argument('--data_path', type=str, default='./data/ABC/')
parser.add_argument('--dataset', type=str, default='ABC')
parser.add_argument('--train_dataset',
type=str,
default='train_data.txt',
help='file name for the list of object names for training')
parser.add_argument('--test_dataset',
type=str,
default='test_data.txt',
help='file name for the list of object names for testing')
parser.add_argument('--checkpoint_path',
default=None,
help='Model checkpoint path [default: None]')
parser.add_argument('--batch_size', type=int, default=4)
parser.add_argument('--vis',
action='store_true',
help='whether do the visualization')
parser.add_argument('--vis_dir',
type=str,
default=None,
help='visualization directory')
parser.add_argument('--eval',
action='store_true',
help='evaluate iou error')
parser.add_argument('--debug',
action='store_true',
help='whether switch to debug module')
parser.add_argument('--MEAN_SHIFT_STEP',
type=int,
default=5,
help='whether switch to debug module')
parser.add_argument('--log_dir',
default='./log/test',
help='Dump dir to save model checkpoint [default: log]')
# training parameters
parser.add_argument('--max_epoch',
type=int,
default=1500,
help='Epoch to run [default: 180]')
parser.add_argument('--learning_rate',
type=float,
default=1e-3,
help='Initial learning rate [default: 0.001]')
parser.add_argument('--optimizer',
type=str,
default='adam',
help='[adam, sgd]')
parser.add_argument('--weight_decay',
type=float,
default=0,
help='Optimization L2 weight decay [default: 0]')
parser.add_argument('--momentum',
type=float,
default=0.9,
help='Optimization L2 weight decay [default: 0]')
parser.add_argument('--bn_decay_step',
type=int,
default=20,
help='Period of BN decay (in epochs) [default: 20]')
parser.add_argument('--bn_decay_rate',
type=float,
default=0.5,
help='Decay rate for BN decay [default: 0.5]')
parser.add_argument('--lr_decay_steps',
default='40',
help='When to decay the learning rate (in epochs) [default: 80,120,160]')
parser.add_argument('--lr_decay_rates',
default='0.1,0.1,0.1',
help='Decay rates for lr decay [default: 0.1,0.1,0.1]')
parser.add_argument('--lr_decay_rate',
type=float,
default=0.1,
help='Decay rates for lr decay')
parser.add_argument('--loss_class',
type=str,
default='frp',
help='loss functions; f:embedding loss; r:primitive loss;\
p:parameter loss, n:normal loss')
parser.add_argument('--val_skip',
type=int,
default=100,
help='only test sub dataset')
parser.add_argument('--train_skip',
type=int,
default=1,
help='only train sub dataset')
parser.add_argument('--train_fold',
type=int,
default=1)
parser.add_argument('--eval_interval',
type=int,
default=3,
help='evaluation interval')
parser.add_argument('--save_interval',
type=int,
default=6,
help='save specific checkpoint interval')
parser.add_argument('--augment',
type=int,
default=0,
help='whether do data augment')
parser.add_argument('--if_normal_noise',
type=int,
default=0,
help='whether do normal noise')
parser.add_argument('--optimize',
type=int,
default=0,
help='0: optimize feat loss; 1:optimize miou')
# model parameters
parser.add_argument('--gpu',
type=str,
default='0',
help='gpu number')
parser.add_argument('--not_load_model',
action='store_true',
help='whether load model from checkpoint')
parser.add_argument('--model_dict',
type=str,
default='models.dgcnn',
help='model file name')
parser.add_argument('--sigma',
type=float,
default=0.8,
help='affinity matrix hyper paramter')
parser.add_argument('--normal_sigma',
type=float,
default=0.1,
help='normal difference affinity matrix hyper paramter')
parser.add_argument('--out_dim',
type=int,
default=128,
help='output feature dimension')
parser.add_argument('--type_weight',
type=float,
default=1.0,
help='type loss weight')
parser.add_argument('--param_weight',
type=float,
default=0.1,
help='parameter loss weight')
parser.add_argument('--normal_weight',
type=float,
default=1.0,
help='normal loss weight')
parser.add_argument('--input_normal',
type=int,
default=0,
help='whether input normal')
parser.add_argument('--edge_knn',
type=int,
default=50,
help='k nearest neighbor of normal')
parser.add_argument('--feat_ent_weight',
type=float,
default=1.70,
help='network feature entropy weight')
parser.add_argument('--dis_ent_weight',
type=float,
default=1.10,
help='primitive distance entropy weight')
parser.add_argument('--edge_ent_weight',
type=float,
default=1.23,
help='edge boundary entropy weight')
parser.add_argument('--topK',
type=int,
default=10,
help='the number of eigenvectors used')
parser.add_argument('--edge_topK',
type=int,
default=12,
help='the number of eigenvectors edge feature used')
parser.add_argument('--bandwidth',
type=float,
default=0.85,
help='kernl bandwidth')
parser.add_argument('--backbone',
type=str,
default='DGCNN')
def build_option():
FLAGS = parser.parse_args()
return FLAGS