forked from Maurya69/Movie_Review-Contribute-a-thon-
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpredict.py
61 lines (52 loc) · 2 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import pandas as pd
import joblib
from keras.models import load_model
from pipe import NLPPreprocessor
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from keras.models import Sequential
from keras.layers import LSTM, Dense, Embedding, GlobalAveragePooling1D
from keras.utils import to_categorical, pad_sequences
from ast import literal_eval
from pipe import *
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import joblib
# Load the trained model, preprocessing pipeline, and embedding generator
model_file = 'model.h5'
preprocessor = joblib.load('pre_pipeline.pkl')
# Load the model
model = load_model(model_file)
# extra axis for sentiment relations
def interpret_sentiment(prob):
if prob <= 0.20:
return "Strongly Negative"
elif prob <= 0.40:
return "Negative"
elif prob <= 0.49:
return "Neutral / Slightly Negative"
elif prob == 0.50:
return "Neutral / Ambiguous"
elif prob <= 0.60:
return "Neutral / Slightly Positive"
elif prob <= 0.80:
return "Positive"
else:
return "Strongly Positive"
def predict_sentiment(review:str):
# Preprocess the review using the pipeline
a = {"a": [review]}
processed_review = preprocessor.clean(pd.DataFrame(a)['a'])
# Generate embeddings using the embedding generator
embeddings = preprocessor.single_review_embedding(processed_review)
# Make the prediction
prediction = model.predict(embeddings)
predicted_prob = prediction[0]
# Interpret the prediction (adjust based on your labeling)
sentiment = interpret_sentiment(predicted_prob)
print(f"The predicted sentiment is: {sentiment}")
predict_sentiment("Harry potter is magical movie, just amazing, i liked whole plot.")
# 1/1 [==============================] - ETA: 0s
# 1/1 [==============================] - 1s 910ms/step
# The predicted sentiment is: Strongly Positive