-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils_loading.py
336 lines (290 loc) · 11.1 KB
/
utils_loading.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
"""
Copyright 2023-2024
Institute of Theoretical and Applied Informatics,
Polish Academy of Sciences (ITAI PAS) https://www.iitis.pl
The main author of the code:
- Kamil Książek (ITAI PAS, ORCID ID: 0000-0002-0201-6220).
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
---
Polar HRV Data Analysis Library (PDAL) v 1.1
---
A source code to the paper:
The analysis of heart rate variability and accelerometer mobility data
in the assessment of symptom severity in psychosis disorder patients
using a wearable Polar H10 sensor
Authors:
- Kamil Książek (ITAI PAS, ORCID ID: 0000-0002-0201-6220),
- Wilhelm Masarczyk (FMS MUS, ORCID ID: 0000-0001-9516-0709),
- Przemysław Głomb (ITAI PAS, ORCID ID: 0000-0002-0215-4674),
- Michał Romaszewski (ITAI PAS, ORCID ID: 0000-0002-8227-929X),
- Iga Stokłosa (FMS UMS, ORCID ID: 0000-0002-7283-5491),
- Piotr Ścisło (PDMH, ORCID ID: 0000-0003-1213-2935),
- Paweł Dębski (FMS UMS, ORCID ID: 0000-0001-5904-6407),
- Robert Pudlo (FMS UMS, ORCID ID: 0000-0002-5748-0063),
- Piotr Gorczyca (FMS UMS, ORCID ID: 0000-0002-9419-7988),
- Magdalena Piegza (FMS UMS, ORCID ID: 0000-0002-8009-7118).
*ITAI PAS* - Institute of Theoretical and Applied Informatics,
Polish Academy of Sciences, Gliwice, Poland;
*FMS UMS* - Faculty of Medical Sciences in Zabrze,
Medical University of Silesia, Tarnowskie Góry, Poland;
*PDMH* - Psychiatric Department of the Multidisciplinary Hospital,
Tarnowskie Góry, Poland.
"""
import pickle
import pandas as pd
import numpy as np
from typing import List
from retry import retry
from utils_preprocessing import (
convert_absolute_time_to_timestamps_from_given_timestamp,
interpolate_data_with_splines,
remove_adjacent_beats,
remove_consecutive_beats_after_holes,
remove_first_and_last_indices,
remove_manually_anomalies,
remove_negative_timestamps,
select_indices_to_filtering,
)
from utils_basic_plots import (
plot_1D_signal,
plot_accelerometer_data
)
def load_data_for_single_person(main_folder,
cur_person_group,
cur_person_number,
datatype):
"""
Load measurements for a selected person.
Arguments:
----------
*main_folder*: (string) folder with experiment's files
*cur_person_group*: (string) 'treatment' or 'control'
*cur_person_number*: (int) number of the selected person
*datatype*: (string) 'RR' (RR-interval) or 'ACC' (accelerometer)
Returns:
*data*: (Pandas dataframe) contains loaded data indicated
by the function arguments
"""
data = load_dataframe(
main_folder, cur_person_group, cur_person_number, datatype)
data["Phone timestamp"] = pd.to_datetime(data["Phone timestamp"])
initial_timestamp = data.iloc[0]["Phone timestamp"]
data = convert_absolute_time_to_timestamps_from_given_timestamp(
data, initial_timestamp
)
return data
def load_and_preprocess_data_for_single_person(parameters,
cur_person_group,
cur_person_number,
plot=False):
"""
Prepare loading and full preprocesing of the data,
i.e. removing of negative timestamps due to the device failure,
removing of a few of first and last indices of the measurement,
removing of a few heart beats after longer holes (e.g. due to
device connection problems), manual anomaly detection + anomaly
detection using Discrete Wavelet Transform, removing of a few
heart beats near the anomalous ones. Possibly also apply
data interpolation method.
Arguments:
----------
*parameters*: (dictionary) contains parameters, including
the number of seconds for which the indices
will be removed
*cur_person_group*: (string) 'treatment' or 'control'
*cur_person_number*: (int) number of the selected person
*plot*: (Boolean) optional argument defining whether a plot
after performing of Discrete Wavelet Transform
should be prepared
Returns:
--------
*data*: (Pandas Dataframe) loaded and preprocessed data
with timestamps and corresponding RR intervals
"""
data_type = 'rr_intervals'
column_name = 'RR-interval [ms]'
abbrv = 'RR'
main_folder = parameters["main_folder"]
# Load raw data for the selected person
data = load_data_for_single_person(
main_folder,
cur_person_group,
cur_person_number,
abbrv)
# Remove negative timedeltas. In some cases particular
# measurements are obtained with delay
data = remove_negative_timestamps(data)
# Remove first and last few measurements as a typical source
# of anomalies
data = remove_first_and_last_indices(
data,
parameters['cut_time_from_start'],
parameters['cut_time_before_finish']
)
# Remove some measurements after longer holes in the dataset
data = remove_consecutive_beats_after_holes(
data,
parameters['threshold_for_hole_duration'],
parameters['time_after_hole_for_removing']
)
data = data.reset_index(drop=True)
# Prepare Discrete Wavelet Transform
DWT_coefficients, filtered_indices = select_indices_to_filtering(
data, column_name
)
if plot:
if "plot_saving_folder" in parameters:
saving_folder = parameters["plot_saving_folder"]
else:
saving_folder = None
plot_1D_signal(
data,
data_type,
column_name=[column_name],
anomalies=filtered_indices,
saving_folder=saving_folder,
name=f'{data_type}_{cur_person_group}_{cur_person_number}'
)
if parameters['interpolation']:
data_before_DWT = data.copy()
# Remove neighbouring heart beats to the selected ones
data = remove_adjacent_beats(
data,
filtered_indices,
parameters['adjacent_beats_for_removing']
)
# Remove anomalies which have been detected manually
data = remove_manually_anomalies(
data,
cur_person_group,
cur_person_number
)
# Prepare data interpolation, if desired
if parameters['interpolation']:
data, predictions, predicted_timestamps = interpolate_data_with_splines(
original_data=data_before_DWT,
current_data=data,
column_name=column_name
)
return data
@retry((FileNotFoundError, IOError))
def load_dataframe(folder, group, number, datatype):
"""
Load Pandas dataframe according to the selected group
and the number of the selected person in a given group.
Arguments:
----------
*folder*: (string) folder with experiment's files
*group*: (string) a kind of people's group: 'control'
or 'treatment'
*number*: (int) the number of a given person in group
*datatype*" (string) available options: 'ACC' or 'RR'
Returns:
--------
*data*: Pandas dataframe with loaded data
"""
if datatype not in ['RR', 'ACC']:
return ValueError(
'Wrong type of data. Possible options: "ACC" or "RR".')
data = pd.read_csv(
f'{folder}{group}_{number}.csv',
delimiter=';'
)
return data
def store_HRV_results_different_methods(HRV_results: np.ndarray | float,
timestamps: np.ndarray | None,
group: str,
person: int) -> List[float | list]:
"""
Prepare a list summarizing results for a current person.
Arguments:
----------
*HRV_results*: (Numpy array | float) a single number or a table of
numbers representing consecutive HRV values
*timestamps*: (Numpy array | None) represents a table of timestamps
to corresponding HRV values (in the case of Numpy array
in *HRV_results*) or None (in the case of a float number
in *HRV_results*)
*group*: (string) the name of the tested group
*person* (int) the number of the currently tested person
"""
if timestamps is None:
result = [group, person, HRV_results]
else:
result = [group, person, list(HRV_results), list(timestamps)]
return result
def create_dataframe_from_HRV_results_different_methods(
results: List[float | list],
method: str) -> pd.DataFrame:
"""
Prepares a Pandas Dataframe with previously prepared results.
Arguments:
----------
*results*: a list of floats or a list of lists having the names
of groups, the number of persons, the values of the HRV,
and potentially also timestamps
*method*: (string) the name of the HRV calculation method
Returns:
--------
Pandas Dataframe containing prepared results
"""
if len(results[0]) == 3:
dataframe = pd.DataFrame(
results,
columns=['group', 'no_of_person', f'HRV_{method}']
)
elif len(results[0]) == 4:
dataframe = pd.DataFrame(
results,
columns=['group', 'no_of_person', f'HRV_{method}', 'timestamps']
)
else:
raise ValueError('Wrong shape of the table with results!')
return dataframe
def load_results_file(fname):
"""
Load a pickle file.
Argument:
---------
*fname* (string) path to the file
Returns an loaded object.
"""
with open(fname, "rb") as fobj:
return pickle.load(fobj)
if __name__ == "__main__":
main_folder = (
'/data/anonimized_accelerometer_data/'
)
# Plot accelerometer data
folder_for_ACC_plots = '../Plots/raw_accelerometer_data/'
for group in ['control', 'treatment']:
for person in range(1, 49):
if (group == 'treatment' and (
person in [5, 6, 10, 11, 12, 14, 18, 28, 30, 34, 35, 39] or
person > 42)) or \
(group == 'control' and (
person > 48 or
person in [1, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 17, 23, 27, 48])):
continue
else:
data = load_data_for_single_person(
main_folder,
group,
person,
'ACC'
)
plot_accelerometer_data(
data,
folder_for_ACC_plots,
name=f'{group}_{person}'
)