Skip to content

Latest commit

 

History

History
148 lines (123 loc) · 6.2 KB

README.md

File metadata and controls

148 lines (123 loc) · 6.2 KB

STARRPeaker

Uniform processing pipeline and peak caller for STARR-seq data

Changes from upstream

Note: This repository is based on gersteinlab/starrpeaker version 1.0

  • Make compatible with Python 3
  • Make number of CPUs used configurable
  • Allow running linearfold_v executable directly, bypassing its linearfold Python 2 front end
  • Remove dependency on scikit-learn, by using z-score calculation from scipy instead

Dependencies (version tested)

  • Python 3 (v3.8.5)
  • pysam (v0.16.0.1)
  • pybedtools (v0.8.1)
  • pyBigWig (v0.3.18)
  • numpy (v1.20.1)
  • scipy (v1.6.1)
  • pandas (v1.2.3)
  • statsmodels (v0.12.2)

Note that these dependencies are updated relative to the Python 2 associated ones from upstream.

Installation (updated)

Create a conda environment with Python 3

conda create -n starrpeaker python=3 scipy statsmodels pybedtools pysam pyBigWig
conda activate starrpeaker
pip install git+https://github.com/imbforge/starrpeaker
starrpeaker -h

The sections below were not changed from upstream, except for the 'Usage' options.

Preprocessing

Few notes on how alignment (BAM) files were prepared

For each biological replicates in FASTQ format

  1. Aligned paired-end reads using BWA mem (v0.7.17)
  2. Removed duplicates using picard (v2.9.0)
  3. Filtered alignments using SAMtools (v1.9) with the following arguments
samtools view -F 3852 -f 2 -q 40

# -F: exclude FLAG 3852
#    4 read unmapped (0x4)
#    8 mate unmapped (0x8)
#  256 not primary alignment (0x100)
#  512 read fails platform/vendor quality checks (0x200)
# 1024 read is PCR or optical duplicate (0x400)
# 2048 supplementary alignment (0x800)

# -f: require FLAG 2
#    2 properly aligned

# -q: exclude MAPQ less than 40
  1. Merged biological replicates using SAMtools

Inputs

Covariates

The peak calling algorithm models STARR-seq fragment coverage across the genome using multiple covariates to correct for potential sequencing bias. It is recommended to include potential confounding variables into the model. These include but not limited to GC-content, mappability tracks, and so on.

The following covariates have been precomputed for use with STARRPeaker:

Sources:

Usage

usage: starrpeaker.py [-h] --prefix PREFIX --chromsize CHROMSIZE --blacklist
                      BLACKLIST -i INPUT -o OUTPUT [--length LENGTH]
                      [--step STEP] [--cov COV [COV ...]] [--min MIN]
                      [--max MAX] [--readstart] [--strand STRAND]
                      [--threshold THRESHOLD] [--mode MODE] [--mincov MINCOV]
                      [--eq EQ] [--se] [--cpus CPUS]

STARRPeaker

required arguments:
  --prefix PREFIX             Output File Prefix
  --chromsize CHROMSIZE       Chrom Sizes
  --blacklist BLACKLIST       Blacklist Region in BED format
  -i INPUT, --input INPUT     Input BAM File
  -o OUTPUT, --output OUTPUT  STARR-seq BAM File

optional arguments:
  -h, --help                  show this help message and exit
  --length LENGTH             Bin Length (default: 500)
  --step STEP                 Step Size (default: 100)
  --cov COV [COV ...]         Covariate BigWig Files
  --min MIN                   Minimum Template Size (default: 200)
  --max MAX                   Maximum Template Size (default: 1000)
  --readstart                 Use Read Start Position instead of Fragment Center
  --strand STRAND             Use all/fwd/rev Stranded Fragments (default: all)
  --threshold THRESHOLD       Adjusted P-value Threshold (default: 0.05)
  --mode MODE                 Mode [1 - using input as covariate (default), 2 - using input as offset]
  --mincov MINCOV             Minimum Coverage (default: 10)
  --eq EQ                     Extreme Quantile to Remove (default: 1e-5)
  --se                        Use Single-End instead of Paired-end Sequencing
  --cpus CPUS                 Number of CPUs for parallel processing (default=1)

Example

starrpeaker --prefix <prefix for output files> --chromsize <hg38.chrom.sizes> --blacklist <blacklist_GRCh38.bed> --cov <covariate 1: gc content> <covariate 2: mappability> <covariate 3: conservation> --input <input.bam> --output <output.bam> --threshold 0.05

Outputs Files

  • prefix.bin.bed: Genomic bin BED file
  • prefix.bam.bct: Alignment counts in BST format (1st col: input, 2nd col: output, 3rd col: normalized input)
  • prefix.cov.tsv: Covariate matrix in TSV format
  • prefix.input.bw: Input fragment coverage in bigWig format
  • prefix.output.bw: Output fragment coverage in bigWig format
  • prefix.peak.bed: Initial peak calls (before centering and merging)
  • prefix.peak.final.bed: Final peak calls
  • prefix.peak.pval.bw: P-value track in bigWig format (-log10)
  • prefix.peak.qval.bw: Q-value track in bigWig format (-log10)

Final Peak Call Format (BED6+4)

  • Column 1: Chromosome
  • Column 2: Start position
  • Column 3: End position
  • Column 4: Name (peak rank based on score, 1 being the highest rank)
  • Column 5: Score (integer value of "100 * fold change", maxed at 1000 per BED format specification)
  • Column 6: Strand
  • Column 7: Fold change (output/normalized-input)
  • Column 8: Output fragment coverage
  • Column 9: -log10 of P-value
  • Column 10: -log10 of Q-value (Benjamini-Hochberg False Discovery Rate, FDR)

BED format specification: https://genome.ucsc.edu/FAQ/FAQformat.html#format1