-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathali_1_NutrientModelling.R
305 lines (224 loc) · 12.6 KB
/
ali_1_NutrientModelling.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
################################################################################
######################## Libraries and Packages Initialisation##################
## Package setup
# Package install
package_list <- c("stargazer", "ggplot2", "dplyr", "nnet", "zoo", "moments",
"MASS", "tidyr", "corrplot")
new_packages <- package_list[!(package_list %in%
installed.packages()[, "Package"])]
if(length(new_packages)) install.packages(new_packages)
# Package load
lapply(package_list, require, character.only = TRUE)
## Setwd
getwd()
################################################################################
######################## Data Loading and Variable Extraction ##################
# Load the CSV data into a data frame
file_name <- "data/maxime-180324/Health_GPS_ind_baseline.csv"
data <- read.csv(file_name)
head(data)
# Attach the data frame for easier variable referencing
attach(data)
# Extracting variables from the 'data' data frame
sex <- data$ind_gender
age <- data$ind_age
age1 <- data$ind_age
age2 <- data$ind_age * data$ind_age
age3 <- data$ind_age * data$ind_age * data$ind_age
inc <- data$hh_tercile
protein <- data$ind_protein_g
carb <- data$ind_carb_g
fat <- data$ind_tot_fat_g
sodium <- data$ind_sodium_mg
sector <- data$hh_sector
energy_original <- data$ind_energy_kcal
# Calculate 'energy' based on the standard formula
energy <- 4 * carb + 9 * fat + 4 * protein + 0 * sodium
################################################################################
########################Filtering###############################################
# Create 'subdata' dataframe
subdata <- data.frame(sex, age, age1, age2, age3, inc, sector, carb, fat,
protein, sodium, energy, energy_original)
# Remove rows with non-numeric NaN or empty values
subdata <- subdata[complete.cases(subdata), ]
# Set lower and upper quantiles
upper_q <- 0.99
lower_q <- 1-upper_q
# Filter 'subdata' based on conditions
df <- subdata %>%
filter(
age < 100, # Age less than 100
carb > quantile(carb, lower_q) & carb < quantile(carb, upper_q), # Carb within quantiles
fat > quantile(fat, lower_q) & fat < quantile(fat, upper_q), # Fat within quantiles
protein > quantile(protein, lower_q) & protein < quantile(protein, upper_q), # Protein within quantiles
sodium > quantile(sodium, lower_q) & sodium < quantile(sodium, upper_q), # Sodium within quantiles
energy > quantile(energy, lower_q) & energy < quantile(energy, upper_q) # Energy within quantiles
)
################################################################################
########################Summary Statistics by Age and Sex#######################
# Calculate mean values for 'carb', 'fat', 'protein', 'sodium', and 'energy'
# based on 'age' and 'sex'
result <- df %>%
group_by(age, sex) %>%
summarize(
carb_mean = mean(carb),
fat_mean = mean(fat),
protein_mean = mean(protein),
sodium_mean = mean(sodium),
energy_mean = mean(energy)
)
# Merge the calculated mean values back to the original dataframe ('df')
merged_df <- merge(df, result, by = c("sex", "age"), all.x = TRUE)
################################################################################
########################BOX-COX Transformation: Carb############################
# Calculate Box-Cox transformation for 'carb' variable
x <- merged_df$carb / merged_df$carb_mean
boxcox_results <- boxcox(lm(x ~ 1))
lambda_carb <- boxcox_results$x[which.max(boxcox_results$y)]
# Apply Box-Cox transformation to 'carb' and create a new variable 'new_x_exact'
merged_df$new_x_exact <- (x^lambda_carb - 1) / lambda_carb
# Fit a linear regression model for the transformed variable
reg_carb <- lm(new_x_exact ~ sex + age1 + age2 + age3 + sector + inc, data = merged_df)
# Display summary statistics of the regression model
summary(reg_carb)
# Calculate the standard deviation of the residuals
sd_carb <- sd(reg_carb$residuals)
# Plot the density distribution of 'carb' variable
plot(density(carb), col="red", lwd=3, main="Carbs: Original Distribution")
# Plot the density distribution of transformed 'carb' variable
plot(density(merged_df$new_x_exact), col="red", lwd=3, main="Carbs: Transformed Distribution")
# Plot the density distribution of standardized residuals for 'carb' regression
plot(density(scale(reg_carb$residuals)), col="red", main="Carb Residuals", lwd=3)
# Standardize 'carb' residuals
carb_transformed <- scale(reg_carb$residuals)
# Adjust the number of random values for comparison
num_values <- 1000000
random_values <- rnorm(num_values)
# Plot the density distribution of standardized 'carb' residuals and random values from a normal distribution
main_title <- "Carbs: Transformed Distribution vs. Random Normal Distribution"
plot(density(carb_transformed), col="red", lwd=3, main = main_title)
lines(density(random_values), col="blue", lwd=3)
################################################################################
########################BOX-COX Transformation: Fat#############################
# Calculate Box-Cox transformation for 'fat' variable
x <- merged_df$fat / merged_df$fat_mean
boxcox_results <- boxcox(lm(x ~ 1))
lambda_fat <- boxcox_results$x[which.max(boxcox_results$y)]
# Apply Box-Cox transformation to 'fat' and create a new variable 'new_x_exact'
merged_df$new_x_exact <- (x^lambda_fat - 1) / lambda_fat
# Plot the density of the transformed variable
plot(density(merged_df$new_x_exact))
# Fit a linear regression model for the transformed variable
reg_fat <- lm(new_x_exact ~ sex + age1 + age2 + age3 + sector + inc, data = merged_df)
# Display summary statistics of the regression model
summary(reg_fat)
# Calculate the standard deviation of the residuals
sd_fat <- sd(reg_fat$residuals)
# Plot the density distribution of 'fat' variable
plot(density(fat), col="red", lwd=3, main="Fat: Original Distribution")
# Plot the density distribution of transformed 'fat' variable
plot(density(merged_df$new_x_exact), col="red", lwd=3, main="Fat: Transformed Distribution")
# Plot the density distribution of standardized residuals for 'fat' regression
plot(density(scale(reg_fat$residuals)), col="red", main="Fat Residuals",lwd=3)
# Standardize 'fat' residuals
fat_transformed <- scale(reg_fat$residuals)
# Adjust the number of random values for comparison
num_values <- 1000000
random_values <- rnorm(num_values)
# Plot the density distribution of standardized 'fat' residuals and random values from a normal distribution
main_title <- "Fat: Transformed Distribution vs. Random Normal Distribution"
plot(density(fat_transformed), col="red", lwd=3, main = main_title)
lines(density(random_values), col="blue", lwd=3)
################################################################################
########################BOX-COX Transformation: Protein#########################
# Calculate Box-Cox transformation for 'protein' variable
x <- merged_df$protein / merged_df$protein_mean
boxcox_results <- boxcox(lm(x ~ 1))
lambda_protein <- boxcox_results$x[which.max(boxcox_results$y)]
# Apply Box-Cox transformation to 'protein' and create a new variable 'new_x_exact'
merged_df$new_x_exact <- (x^lambda_protein - 1) / lambda_protein
# Fit a linear regression model for the transformed variable
reg_protein <- lm(new_x_exact ~ sex + age1 + age2 + age3 + sector + inc, data = merged_df)
# Display summary statistics of the regression model
summary(reg_protein)
# Calculate the standard deviation of the residuals
sd_protein <- sd(reg_protein$residuals)
# Plot the density distribution of 'protein' variable
plot(density(protein), col="red", lwd=3, main="Protein: Original Distribution")
# Plot the density distribution of transformed 'protein' variable
plot(density(merged_df$new_x_exact), col="red", lwd=3, main="Protein: Transformed Distribution")
# Plot the density distribution of standardized residuals for 'protein' regression
plot(density(scale(reg_protein$residuals)), col="red", main="Protein Residuals",lwd=3)
# Standardize 'protein' residuals
protein_transformed <- scale(reg_protein$residuals)
# Adjust the number of random values for comparison
num_values <- 1000000
random_values <- rnorm(num_values)
# Plot the density distribution of standardized 'protein' residuals and random values from a normal distribution
main_title <- "Protein: Transformed Distribution vs. Random Normal Distribution"
plot(density(protein_transformed), col="red", lwd=3, main = main_title)
lines(density(random_values), col="blue", lwd=3)
################################################################################
########################BOX-COX Transformation: Sodium##########################
# Calculate Box-Cox transformation for 'sodium' variable
x <- merged_df$sodium / merged_df$sodium_mean
boxcox_results <- boxcox(lm(x ~ 1))
lambda_sodium <- boxcox_results$x[which.max(boxcox_results$y)]
# Apply Box-Cox transformation to 'sodium' and create a new variable 'new_x_exact'
merged_df$new_x_exact <- (x^lambda_sodium - 1) / lambda_sodium
# Fit a linear regression model for the transformed variable
reg_sodium <- lm(new_x_exact ~ sex + age1 + age2 + age3 + sector + inc, data = merged_df)
# Display summary statistics of the regression model
summary(reg_sodium)
# Calculate the standard deviation of the residuals
sd_sodium <- sd(reg_sodium$residuals)
# Plot the density distribution of 'sodium' variable
plot(density(sodium), col="red", lwd=3, main="Sodium: Original Distribution")
# Plot the density distribution of transformed 'sodium' variable
plot(density(merged_df$new_x_exact), col="red", lwd=3, main="Sodium: Transformed Distribution")
# Plot the density distribution of standardized residuals for 'sodium' regression
plot(density(scale(reg_sodium$residuals)), col="red", main="Sodium Residuals",lwd=3)
# Standardize 'sodium' residuals
sodium_transformed <- scale(reg_sodium$residuals)
# Adjust the number of random values for comparison
num_values <- 1000000
random_values <- rnorm(num_values)
# Plot the density distribution of standardized 'sodium' residuals and random values from a normal distribution
main_title <- "Sodium: Transformed Distribution vs. Random Normal Distribution"
plot(density(sodium_transformed), col="red", lwd=3, main = main_title)
lines(density(random_values), col="blue", lwd=3)
################################################################################
########################Box-Cox Transformation Parameters#######################
lambda = c(lambda_carb,lambda_fat,lambda_protein,lambda_sodium)
sd = c(sd_carb,sd_fat,sd_protein,sd_sodium)
boxcoxparameters = data.frame(lambda,sd)
rownames(boxcoxparameters) = c("carb","fat","protein","sodium")
################################################################################
##############################Nutrient Regression Residuals & Correlations######
# Create a dataframe 'nutrients_residuals' containing residuals from regression models for nutrients
nutrients_residuals <- data.frame(
carb_residuals = reg_carb$residuals,
fat_residuals = reg_fat$residuals,
protein_residuals = reg_protein$residuals,
sodium_residuals = reg_sodium$residuals
)
# Calculate the correlation matrix for residuals
correlation_matrix <- cor(nutrients_residuals)
# Plot the correlation matrix
rownames(correlation_matrix) <- c('carb','fat','protein','sodium')
colnames(correlation_matrix) <- c('carb','fat','protein','sodium')
main_title <- "Residuals: Correlation Plot"
corrplot(corr = correlation_matrix, type="upper", title=main_title)
################################################################################
#######################################Output Files#############################
# Save the coefficients from regression models for transformed variables ('carb', 'fat', 'protein', 'sodium') using Box-Cox transformation
write.csv(reg_carb$coefficients, "out/boxcox_carb_coefficients.csv")
write.csv(reg_fat$coefficients, "out/boxcox_fat_coefficients.csv")
write.csv(reg_protein$coefficients, "out/boxcox_protein_coefficients.csv")
write.csv(reg_sodium$coefficients, "out/boxcox_sodium_coefficients.csv")
# Save Box-Cox transformation parameters to a CSV file
write.csv(boxcoxparameters, "out/boxcox_parameters.csv")
# Save correlation matrix to a CSV file
write.csv(correlation_matrix, "out/boxcox_correlationmatrix.csv")
#####################################################################################
#####################################################################################