-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathinference.py
53 lines (42 loc) · 1.54 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from net import Net
from dataset import NerDataset, pad, VOCAB
from trainer import eval
import torch
import numpy as np
import argparse
parser = argparse.ArgumentParser(description='NER Inference')
parser.add_argument("--sent", nargs=1, required=True, type=str, help="Enter bangla sentence")
args = parser.parse_args()
def run_ner_infer(sent):
device = 'cuda' if torch.cuda.is_available() else 'cpu'
top_rnns=True
model = Net(top_rnns, len(VOCAB), device, finetuning=True)
if device == 'cpu':
model.load_state_dict(torch.load('models/banner_model.pt', map_location=torch.device('cpu')))
elif device == 'cuda':
model.load_state_dict(torch.load('.models/banner_model.pt'))
model.to(device)
tags = []
for x in range(len(sent.split())):
tags.append('O')
sent_infer=[]
sent_infer.append(["[CLS]"] + sent.split() + ["[SEP]"])
tags_infer=[]
tags_infer.append(["<PAD>"] + tags + ["<PAD>"])
infer_data = NerDataset(sent_infer, tags_infer)
infer_iter = torch.utils.data.DataLoader(dataset=infer_data,
batch_size=1,
shuffle=False,
collate_fn = pad,
num_workers=0
)
pred = eval(model, infer_iter)
for x in range(len(pred[0])):
if pred[0][x] == '<PAD>':
pred[0][x] = 'O'
return sent_infer[0][1:-1],pred[0][1:-1]
def main():
sent = ''.join(args.sent)
print(run_ner_infer(sent))
if __name__ == '__main__':
main()