-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathArithmetic.v
1695 lines (1570 loc) · 78 KB
/
Arithmetic.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Require Import HOASExamples.
Require Import DBCircuits.
Require Import TypeChecking.
Require Import HOASLib.
Require Import Oracles.
Require Import SemanticLib.
Require Import Symmetric.
Require Import QuantumLib.Matrix.
Require Import Denotation.
Require Import Composition.
Require Import Monad.
Require Import Program.
Require Import List.
Import ListNotations.
Open Scope circ_scope.
Open Scope nat_scope.
Open Scope bexp_scope.
Infix "⊻" := b_xor (at level 40).
Infix "∧" := b_and (at level 40).
Definition nat_to_var (n : nat) : Var := n.
Coercion b_var : Var >-> bexp.
Coercion nat_to_var : nat >-> Var.
(*
Input : var 1 : y
var 2 : x
var 3 : cin
Output : cout = cin(x ⊕ y) ⊕ xy
*)
Definition adder_cout_bexp : bexp := (3 ∧ (2 ⊻ 1)) ⊻ (2 ∧ 1).
(*
Input : var 0 : y
var 1 : x
var 2 : cin
Output : sum = cin ⊕ (x ⊕ y)
*)
Definition adder_sum_bexp : bexp := 2 ⊻ (1 ⊻ 0).
(*
Input : var 0 : x
var 1 : y
Output : xor = x ⊕ y
*)
Definition xor_bexp : bexp := 0 ⊻ 1.
(*
Input : var 0 : x
Output : x' = x
*)
Definition id_bexp : bexp := 0.
Definition list_to_function {A} (l : list A) (d : A) := fun (n : nat) => nth n l d.
Definition fun_of_bools (l : list bool) := fun n => nth n l false.
(*
Fixpoint bools_to_matrix (l : list bool) : Square (2^(length l)) :=
match l with
| [] => I 1
| b :: bs => (bool_to_matrix b ⊗ bools_to_matrix bs)%M
end.
*)
Example test_adder_cout_bexp_000 :
⌈ adder_cout_bexp | fun_of_bools [false; false; false; false]⌉ = false.
Proof. simpl. reflexivity. Qed.
Example test_adder_cout_bexp_001 :
⌈ adder_cout_bexp | fun_of_bools [false; false; false; true] ⌉ = false.
Proof. simpl. reflexivity. Qed.
Example test_adder_cout_bexp_010 :
⌈ adder_cout_bexp | fun_of_bools [false; false; true; false] ⌉ = false.
Proof. simpl. reflexivity. Qed.
Example test_adder_cout_bexp_011 :
⌈ adder_cout_bexp | fun_of_bools [false; false; true; true] ⌉ = true.
Proof. simpl. reflexivity. Qed.
Example test_adder_cout_bexp_100 :
⌈ adder_cout_bexp | fun_of_bools [false; true; false; false] ⌉ = false.
Proof. simpl. reflexivity. Qed.
Example test_adder_cout_bexp_101 :
⌈ adder_cout_bexp | fun_of_bools [false; true; false; true] ⌉ = true.
Proof. simpl. reflexivity. Qed.
Example test_adder_cout_bexp_110 :
⌈ adder_cout_bexp | fun_of_bools [false; true; true; false] ⌉ = true.
Proof. simpl. reflexivity. Qed.
Example test_adder_cout_bexp_111 :
⌈ adder_cout_bexp | fun_of_bools [false; true; true; true] ⌉ = true.
Proof. simpl. reflexivity. Qed.
Example test_adder_sum_bexp_000 :
⌈ adder_sum_bexp | fun_of_bools [false; false; false] ⌉ = false.
Proof. simpl. reflexivity. Qed.
Example test_adder_sum_bexp_001 :
⌈ adder_sum_bexp | fun_of_bools [false; false; true] ⌉ = true.
Proof. simpl. reflexivity. Qed.
Example test_adder_sum_bexp_010 :
⌈ adder_sum_bexp | fun_of_bools [false; true; false] ⌉ = true.
Proof. simpl. reflexivity. Qed.
Example test_adder_sum_bexp_011 :
⌈ adder_sum_bexp | fun_of_bools [false; true; true] ⌉ = false.
Proof. simpl. reflexivity. Qed.
Example test_adder_sum_bexp_100 :
⌈ adder_sum_bexp | fun_of_bools [true; false; false] ⌉ = true.
Proof. simpl. reflexivity. Qed.
Example test_adder_sum_bexp_101 :
⌈ adder_sum_bexp | fun_of_bools [true; false; true] ⌉ = false.
Proof. simpl. reflexivity. Qed.
Example test_adder_sum_bexp_110 :
⌈ adder_sum_bexp | fun_of_bools [true; true; false] ⌉ = false.
Proof. simpl. reflexivity. Qed.
Example test_adder_sum_bexp_111 :
⌈ adder_sum_bexp | fun_of_bools [true; true; true] ⌉ = true.
Proof. simpl. reflexivity. Qed.
Close Scope bexp_scope.
Definition list_of_Qubits (n : nat) : Ctx := repeat (Some Qubit) n.
Definition adder_cout_circ :=
compile adder_cout_bexp (list_of_Qubits 4).
Eval compute in adder_cout_circ.
Definition adder_sum_circ := compile adder_sum_bexp (list_of_Qubits 3).
(* adder_cout circuit with pads, input type is ((4+n) ⨂ Qubit), Box ((5+n) ⨂ Qubit) ((5+n) ⨂ Qubit) *)
Definition adder_cout_circ_with_pads (n : nat) :=
compile adder_cout_bexp (list_of_Qubits (4+n)).
(* adder_sum circuit with pads, input type is ((3+n) ⨂ Qubit), Box ((4+n) ⨂ Qubit) ((4+n) ⨂ Qubit) *)
Definition adder_sum_circ_with_pads (n : nat) :=
compile adder_sum_bexp (list_of_Qubits (3+n)).
Definition calc_xor_circ :=
compile xor_bexp (list_of_Qubits 2).
Definition calc_id_circ := compile id_bexp (list_of_Qubits 1).
Notation "'let_' ( p1 , p2 ) ← 'output' p3 ; c" := (letpair p1 p2 p3 c) (at level 14, right associativity) : circ_scope.
Ltac compute_compile :=
repeat (try unfold compile; simpl;
try unfold inPar; try unfold inSeq;
try unfold id_circ; try unfold init_at; try unfold assert_at;
try unfold Symmetric.CNOT_at).
(*
Require Coq.derive.Derive.
Derive p SuchThat (calc_id_circ = p) As h.
Proof.
unfold calc_id_circ; unfold id_bexp.
compute_compile.
*)
(*
Require Coq.derive.Derive.
Derive p SuchThat (adder_sum_circ = p) As h.
Proof.
unfold adder_sum_circ; unfold adder_sum_bexp.
compute_compile.
repeat (unfold comp; simpl). cbv.
Check (output ∘ pair (qubit 1)). simpl_eq. show_goal. show_hyps. program_simpl. unfold compose. simpl.
unfold comp. Locate "∘". Check pair.
Notation "'let_' p ← 'unbox' ( c1 ) ; c2" := (comp p c1 c2) (at level 14, right associativity) : circ_scope.
(let_ (p8, p9)← output p7;
comp p2'
(comp x
(let_ (p10, p11)← output p9;
gate_ p' ← assert0 @ p10; (p', p11))
(let_ (_, p')← output x; p')) (p8, p2'))
let_ (z_2, out_z) ← unbox adder_z_circ (z_1, (y_1, (pair x_1 (pair cin_1 unit))));
*)
Definition calc_id_circ_with_pads (n : nat) := compile id_bexp (list_of_Qubits (1+n)).
Lemma adder_cout_circ_WT : Typed_Box adder_cout_circ.
Proof. apply compile_WT. Qed.
Lemma adder_sum_circ_WT : Typed_Box adder_sum_circ.
Proof. apply compile_WT. Qed.
Lemma adder_cout_circ_with_pads_WT : forall n,
Typed_Box (adder_cout_circ_with_pads n).
Proof. intros. apply compile_WT. Qed.
Lemma adder_sum_circ_with_pads_WT : forall n,
Typed_Box (adder_sum_circ_with_pads n).
Proof. intros. apply compile_WT. Qed.
Lemma calc_xor_circ_WT : Typed_Box calc_xor_circ.
Proof. apply compile_WT. Qed.
Lemma calc_id_circ_WT : Typed_Box calc_id_circ.
Proof. apply compile_WT. Qed.
Lemma calc_id_circ_with_pads_WT : forall n,
Typed_Box (calc_id_circ_with_pads n).
Proof. intros. apply compile_WT. Qed.
#[export] Hint Resolve adder_cout_circ_WT adder_sum_circ_WT adder_cout_circ_with_pads_WT adder_sum_circ_with_pads_WT calc_xor_circ_WT calc_id_circ_WT calc_id_circ_with_pads_WT : typed_db.
#[export] Hint Extern 2 (Typed_Box (adder_cout_circ_with_pads _)) =>
apply adder_cout_circ_with_pads_WT : typed_db.
#[export] Hint Extern 2 (Typed_Box (adder_sum_circ_with_pads _)) =>
apply adder_sum_circ_with_pads_WT : typed_db.
#[export] Hint Extern 2 (Typed_Box (calc_id_circ_with_pads _)) =>
apply calc_id_circ_with_pads_WT : typed_db.
Open Scope matrix_scope.
(* Specifications *)
Definition calc_cout (cin x y : bool) : bool := (cin && (x ⊕ y)) ⊕ (x && y).
Definition calc_sum (cin x y : bool) : bool := cin ⊕ (x ⊕ y).
Lemma adder_cout_circ_spec : forall (cout sum y x cin : bool),
⟦adder_cout_circ⟧ (bool_to_matrix cout ⊗ bools_to_matrix [sum; y; x; cin])
= bools_to_matrix ((cout ⊕ (calc_cout cin x y)) :: [sum; y; x; cin]).
Proof.
intros.
apply (compile_correct adder_cout_bexp (list_of_Qubits 4)
(fun_of_bools [sum; y; x; cin]) cout).
repeat constructor.
Qed.
Lemma adder_sum_circ_spec : forall (sum y x cin : bool),
⟦adder_sum_circ⟧ (bool_to_matrix sum ⊗ bools_to_matrix [y; x; cin])
= bool_to_matrix (sum ⊕ (calc_sum cin x y)) ⊗ bools_to_matrix [y; x; cin].
Proof.
intros.
apply (compile_correct adder_sum_bexp (list_of_Qubits 3)
(fun_of_bools [y; x; cin]) sum).
repeat constructor.
Qed.
Lemma adder_cout_circ_with_pads_spec : forall (n : nat) (f : Var -> bool),
⟦adder_cout_circ_with_pads n⟧ ((bool_to_matrix (f 0%nat)) ⊗ (ctx_to_matrix (list_of_Qubits (4+n)) (fun x => f (S x))))
= (bool_to_matrix ((f 0%nat) ⊕ ⌈ adder_cout_bexp | (fun x => f (S x)) ⌉)) ⊗
(ctx_to_matrix (list_of_Qubits (4+n)) (fun x => f (S x))).
Proof.
intros.
apply (compile_correct adder_cout_bexp (list_of_Qubits (4+n)) (fun x => f (S x)) (f 0)).
repeat constructor.
Qed.
Lemma adder_sum_circ_with_pads_spec : forall (n : nat) (f : Var -> bool),
⟦adder_sum_circ_with_pads n⟧ ((bool_to_matrix (f 0)) ⊗ (ctx_to_matrix (list_of_Qubits (3+n)) (fun x => f (S x))))
= (bool_to_matrix ((f 0) ⊕ ⌈ adder_sum_bexp | (fun x => f (S x)) ⌉)) ⊗
(ctx_to_matrix (list_of_Qubits (3+n)) (fun x => f (S x))).
Proof.
intros.
apply (compile_correct adder_sum_bexp (list_of_Qubits (3+n)) (fun x => f (S x)) (f 0%nat)).
repeat constructor.
Qed.
Lemma calc_xor_circ_spec : forall (x y r : bool),
⟦calc_xor_circ⟧ (bool_to_matrix r ⊗ bools_to_matrix [x; y])
= bool_to_matrix (r ⊕ ⌈ xor_bexp | fun_of_bools [x; y] ⌉) ⊗
bools_to_matrix [x; y].
Proof.
intros.
apply (compile_correct xor_bexp [Some Qubit; Some Qubit] (fun_of_bools [x; y]) r).
repeat constructor.
Qed.
(* Should just be bool_to_matrix x *)
Lemma calc_id_circ_spec : forall (x r : bool),
⟦calc_id_circ⟧ (bool_to_matrix r ⊗ bools_to_matrix [x])
= (bool_to_matrix (r ⊕ ⌈ id_bexp | fun_of_bools [x] ⌉)) ⊗
bools_to_matrix [x].
Proof.
intros.
apply (compile_correct id_bexp [Some Qubit] (fun_of_bools [x]) r).
apply (sub_some (Some Qubit) Qubit []).
apply sub_empty.
Qed.
Lemma calc_id_circ_with_pads_spec : forall (n : nat) (f : Var -> bool),
⟦calc_id_circ_with_pads n⟧ ((bool_to_matrix (f 0%nat)) ⊗ (ctx_to_matrix (list_of_Qubits (1+n)) (fun x => f (S x))))
= ((bool_to_matrix (f 0%nat ⊕ ⌈ id_bexp | (fun x => f (S x)) ⌉)) ⊗ (ctx_to_matrix (list_of_Qubits (1+n)) (fun x => f (S x)))).
Proof.
intros.
apply (compile_correct id_bexp (list_of_Qubits (1+n)) (fun x => f (S x)) (f 0%nat)).
repeat constructor.
Qed.
Close Scope matrix_scope.
(*
Input : (cout, (sum, (y, (x, (cin, ())))))
Output : (cout', (sum', (y, (x, (cin, ())))))
*)
Definition carrier_circ_1 : Box (5 ⨂ Qubit) (5 ⨂ Qubit) := adder_cout_circ.
(*
Input : (cout, (sum, (y, (x, (cin, ())))))
Output : (cout', (sum', (y, (x, (cin, ())))))
*)
Definition adder_circ_1 : Box (5 ⨂ Qubit) (5 ⨂ Qubit) :=
(id_circ ∥ adder_sum_circ) ;; adder_cout_circ.
Local Obligation Tactic := program_simpl; try lia.
Program Definition carrier_circ_1_with_pads (n : nat) : Box ((5+n) ⨂ Qubit) ((5+n) ⨂ Qubit)
:= (adder_cout_circ_with_pads n).
Next Obligation.
induction n.
- reflexivity.
- simpl. rewrite IHn. reflexivity.
Defined.
Next Obligation.
induction n.
- reflexivity.
- simpl. rewrite IHn. reflexivity.
Defined.
Local Obligation Tactic := program_simpl; try lia.
Program Definition adder_circ_1_with_pads (n : nat) : Box ((5+n) ⨂ Qubit) ((5+n) ⨂ Qubit) :=
((@id_circ Qubit) ∥ (adder_sum_circ_with_pads n)) ;;
(adder_cout_circ_with_pads n).
Next Obligation.
induction n.
- reflexivity.
- simpl. rewrite IHn. reflexivity.
Defined.
Next Obligation.
induction n.
- reflexivity.
- simpl. rewrite IHn. reflexivity.
Defined.
Lemma carrier_circ_1_WT : Typed_Box carrier_circ_1.
Proof. type_check. Qed.
Lemma carrier_circ_1_with_pads_WT : forall (n : nat),
Typed_Box (carrier_circ_1_with_pads n).
Proof.
intros.
unfold carrier_circ_1_with_pads. simpl_eq.
apply adder_cout_circ_with_pads_WT.
Qed.
Lemma adder_circ_1_WT : Typed_Box adder_circ_1.
Proof. type_check. Qed.
Lemma adder_circ_1_with_pads_WT : forall (n : nat),
Typed_Box (adder_circ_1_with_pads n).
Proof.
intros.
unfold adder_circ_1_with_pads. simpl_eq.
apply inSeq_WT.
- apply inPar_WT.
+ apply id_circ_WT.
+ apply adder_sum_circ_with_pads_WT.
- apply adder_cout_circ_with_pads_WT.
Qed.
#[export] Hint Resolve carrier_circ_1_WT carrier_circ_1_with_pads_WT adder_circ_1_WT
adder_circ_1_with_pads_WT : typed_db.
#[export] Hint Extern 2 (Typed_Box (carrier_circ_1_with_pads _)) =>
apply carrier_circ_1_with_pads_WT : typed_db.
#[export] Hint Extern 2 (Typed_Box (adder_circ_1_with_pads _)) =>
apply adder_circ_1_with_pads_WT : typed_db.
Open Scope matrix_scope.
Lemma dim_eq_lemma_1 : forall n, (size_ctx (list_of_Qubits n )) = n.
Proof.
induction n.
- reflexivity.
- simpl. unfold list_of_Qubits in IHn. rewrite IHn. reflexivity.
Qed.
Lemma dim_eq_lemma_2 : forall n (f : Var -> bool),
@length (Square 2) (ctx_to_mat_list (list_of_Qubits n) f) = n.
Proof.
induction n.
- reflexivity.
- intros. simpl. rewrite IHn. reflexivity.
Qed.
Lemma dim_eq_lemma_3 : forall n, size_wtype (NTensor n Qubit) = n.
Proof.
induction n.
- reflexivity.
- simpl. rewrite IHn. reflexivity.
Qed.
Lemma kron_eq_1 : forall {m n o p} m11 m12 m21 m22,
m11 = m21 -> m12 = m22 -> @kron m n o p m11 m12 = @kron m n o p m21 m22.
intros. rewrite H. rewrite H0. reflexivity.
Qed.
Lemma big_kron_eq_1 : forall n f1 f2,
(forall x, f1 x = f2 x) ->
⨂ ctx_to_mat_list (list_of_Qubits n) f1 = ⨂ ctx_to_mat_list (list_of_Qubits n) f2.
Proof.
induction n.
- intros. simpl. reflexivity.
- intros. simpl. unfold list_of_Qubits in IHn.
rewrite (IHn (fun v : Var => f1 (S v)) (fun v : Var => f2 (S v))).
rewrite H. show_dimensions. repeat rewrite dim_eq_lemma_2. reflexivity.
intros. rewrite H. reflexivity.
Qed.
Lemma ctx_to_matrix_eq_1 : forall n f1 f2,
(forall x, f1 x = f2 x) ->
ctx_to_matrix (list_of_Qubits n) f1 = ctx_to_matrix (list_of_Qubits n) f2.
Proof.
induction n.
- intros. matrix_denote. solve_matrix.
- intros.
specialize (IHn (fun v : Var => f1 (S v)) (fun v : Var => f2 (S v))).
unfold ctx_to_matrix in *.
unfold big_kron in *. simpl in *.
show_dimensions.
rewrite dim_eq_lemma_2.
rewrite dim_eq_lemma_2.
apply kron_eq_1.
+ rewrite H. reflexivity.
+ apply IHn. intros. apply H.
Qed.
Lemma carrier_circ_1_spec : forall (cin x y sum cout : bool),
⟦carrier_circ_1⟧ (bools_to_matrix [cout; sum; y; x; cin])
= (bools_to_matrix [cout ⊕ (calc_cout cin x y); sum ; y; x; cin]).
Proof.
intros.
unfold carrier_circ_1.
apply adder_cout_circ_spec.
Qed.
Lemma adder_circ_1_spec : forall (cin x y sum cout : bool),
⟦adder_circ_1⟧ (bools_to_matrix [cout; sum; y; x; cin])
= (bools_to_matrix [cout ⊕ (calc_cout cin x y); sum ⊕ (calc_sum cin x y); y; x; cin]).
Proof.
intros.
unfold adder_circ_1. simpl.
rewrite inSeq_correct; [|type_check|type_check].
unfold compose_super.
unfold denote. unfold Denote_Box.
unfold bools_to_matrix. simpl.
rewrite_inPar.
remember adder_sum_circ_spec as H; clear HeqH.
unfold bools_to_matrix in H. simpl in H.
rewrite H. clear H.
simpl_rewrite id_circ_spec; [|auto with wf_db].
remember adder_cout_circ_spec as H; clear HeqH.
unfold bools_to_matrix in H. simpl in H.
rewrite H. clear H.
reflexivity.
Qed.
Lemma carrier_circ_1_with_pads_spec : forall (n : nat) (f : Var -> bool),
⟦carrier_circ_1_with_pads n⟧ (ctx_to_matrix (list_of_Qubits (5+n)) f)
= (bool_to_matrix ((f 0) ⊕ ⌈ adder_cout_bexp | (fun x => f (S x)) ⌉)) ⊗
((bool_to_matrix (f 1)) ⊗ (ctx_to_matrix (list_of_Qubits (3+n)) (fun x => f (S (S x))))).
Proof.
intros.
unfold carrier_circ_1_with_pads.
Opaque denote. simpl_eq. Transparent denote.
assert (H1 : forall n f, length (ctx_to_mat_list (list_of_Qubits n) f) =
size_ctx (list_of_Qubits n)).
{ induction n0.
- easy.
- intros. simpl. rewrite IHn0. easy. }
remember adder_cout_circ_with_pads_spec as H; clear HeqH.
specialize (H n%nat (fun (x : Var) => f x)).
unfold ctx_to_matrix in *. simpl in *.
show_dimensions.
rewrite H1 in *. unfold list_of_Qubits in *.
rewrite H. reflexivity.
Qed.
Lemma adder_circ_1_with_pads_spec : forall (n : nat) (f : Var -> bool),
⟦adder_circ_1_with_pads n⟧ (ctx_to_matrix (list_of_Qubits (5+n)) f)
= (bool_to_matrix ((f 0) ⊕ ⌈ adder_cout_bexp | (fun x => f (S x)) ⌉)) ⊗
((bool_to_matrix ((f 1) ⊕ ⌈ adder_sum_bexp | (fun x => f (S (S x))) ⌉)) ⊗
(ctx_to_matrix (list_of_Qubits (3+n)) (fun x => f (S (S x))))).
Proof.
intros.
unfold adder_circ_1_with_pads.
Opaque denote. simpl_eq. Transparent denote.
simpl.
rewrite inSeq_correct; try solve [type_check].
- unfold compose_super.
unfold denote. unfold Denote_Box.
unfold ctx_to_matrix. simpl.
rewrite_inPar.
+
assert (H1 : forall n f, length (ctx_to_mat_list (list_of_Qubits n) f) =
size_ctx (list_of_Qubits n)).
{ induction n0.
- easy.
- intros. simpl. rewrite IHn0. easy. }
remember adder_sum_circ_with_pads_spec as H; clear HeqH.
specialize (H n%nat (fun (x : Var) => f (S x))).
unfold ctx_to_matrix in H.
simpl in *. unfold kron at 5.
unfold kron in H at 4.
rewrite H1 in H. unfold list_of_Qubits in H.
rewrite ctx_to_mat_list_length. simpl.
rewrite H.
clear H1 H.
simpl_rewrite id_circ_spec.
*
assert (H1 : forall n f, length (ctx_to_mat_list (list_of_Qubits n) f) = size_ctx (list_of_Qubits n)).
{ induction n0.
- reflexivity.
- intros. simpl. rewrite IHn0. reflexivity. }
remember adder_cout_circ_with_pads_spec as H; clear HeqH.
specialize (H n%nat (fun (x : Var) => match x with
| S O => f 1%nat ⊕ (f 4%nat ⊕ (f 3%nat ⊕ f 2%nat))
| _ => f x
end)).
unfold ctx_to_matrix in H. simpl in H.
simpl in *. unfold kron at 5.
unfold kron in H at 5.
rewrite H1 in H. unfold list_of_Qubits in H.
rewrite size_ntensor, Nat.mul_1_r.
apply H.
* apply WF_bool_to_matrix.
+ auto 100 with wf_db.
Qed.
Close Scope matrix_scope.
Example adder_circ_1_test_000 :
⟦adder_circ_1⟧ (ctx_to_matrix (list_of_Qubits 5) (fun_of_bools [false; false; false; false; false]))
= (ctx_to_matrix (list_of_Qubits 5) (fun_of_bools [false; false ; false; false; false])).
Proof. apply adder_circ_1_spec. Qed.
Example adder_circ_1_test_001 :
⟦adder_circ_1⟧ (ctx_to_matrix (list_of_Qubits 5) (fun_of_bools [false; false; false; false; true]))
= (ctx_to_matrix (list_of_Qubits 5) (fun_of_bools [false; true ; false; false; true])).
Proof. apply adder_circ_1_spec. Qed.
Example adder_circ_1_test_010 :
⟦adder_circ_1⟧ (ctx_to_matrix (list_of_Qubits 5) (fun_of_bools [false; false; false; true; false]))
= (ctx_to_matrix (list_of_Qubits 5) (fun_of_bools [false; true ; false; true; false] )).
Proof. apply adder_circ_1_spec. Qed.
Example adder_circ_1_test_011 :
⟦adder_circ_1⟧ (ctx_to_matrix (list_of_Qubits 5) (fun_of_bools [false; false; false; true; true]))
= (ctx_to_matrix (list_of_Qubits 5) (fun_of_bools [true; false ; false; true; true] )).
Proof. apply adder_circ_1_spec. Qed.
Example adder_circ_1_test_100 :
⟦adder_circ_1⟧ (ctx_to_matrix (list_of_Qubits 5) (fun_of_bools [false; false; true; false; false]))
= (ctx_to_matrix (list_of_Qubits 5) (fun_of_bools [false; true ; true; false; false] )).
Proof. apply adder_circ_1_spec. Qed.
Example adder_circ_1_test_101 :
⟦adder_circ_1⟧ (ctx_to_matrix (list_of_Qubits 5) (fun_of_bools [false; false; true; false; true]))
= (ctx_to_matrix (list_of_Qubits 5) (fun_of_bools [true; false ; true; false; true] )).
Proof. apply adder_circ_1_spec. Qed.
Example adder_circ_1_test_110 :
⟦adder_circ_1⟧ (ctx_to_matrix (list_of_Qubits 5) (fun_of_bools [false; false; true; true; false]))
= (ctx_to_matrix (list_of_Qubits 5) (fun_of_bools [true; false ; true; true; false] )).
Proof. apply adder_circ_1_spec. Qed.
Example adder_circ_1_test_111 :
⟦adder_circ_1⟧ (ctx_to_matrix (list_of_Qubits 5) (fun_of_bools [false; false; true; true; true] ))
= (ctx_to_matrix (list_of_Qubits 5) (fun_of_bools [true; true ; true; true; true] )).
Proof. apply adder_circ_1_spec. Qed.
(*
Input : (cout, (sum1, (y1, (x1, (sum2, (y2, (x2, ... , (sumn, (yn, (xn, (cin, ())))))))))))
Output : (cout', (sum1', (y1, (x1, (sum2', (y2, (x2, ... , (sumn', (yn, (xn, (cin, ())))))))))))
*)
Open Scope nat_scope.
(* This can be refactored using init_at *)
Program Fixpoint adder_circ_n_left (n : nat) : Box ((1+3*n) ⨂ Qubit) ((1+4*n) ⨂ Qubit) :=
match n with
| O => id_circ
| S n' => (@id_circ Qubit ∥ (@id_circ Qubit ∥ (@id_circ Qubit ∥ (adder_circ_n_left n')))) ;;
(init_at false (4*n) 0) ;;
(adder_circ_1_with_pads (4*n'))
end.
Next Obligation.
replace (S n' + (S n' + (S n' + (S n' + 0))))
with (4 + n' + (n' + (n' + (n' + 0)))) by lia.
simpl. reflexivity.
Defined.
Next Obligation.
replace (S n' + (S n' + (S n' + (S n' + 0))))
with (4 + n' + (n' + (n' + (n' + 0)))) by lia.
simpl. reflexivity.
Defined.
Next Obligation.
replace (n' + S (n' + S (n' + 0))) with (2 + n' + (n' + (n' + 0))) by lia.
simpl. reflexivity.
Defined.
Next Obligation.
replace (n' + S (n' + S (n' + S (n' + 0))))
with (3 + (n' + (n' + (n' + (n' + 0))))) by lia.
simpl. reflexivity.
Defined.
Program Fixpoint adder_circ_n_right (n : nat) : Box ((1+4*n) ⨂ Qubit) ((1+3*n) ⨂ Qubit) :=
match n with
| O => id_circ
| S n' => (carrier_circ_1_with_pads (4*n')) ;;
(assert_at false (4*n) 0) ;;
(@id_circ Qubit ∥ (@id_circ Qubit ∥ (@id_circ Qubit ∥ (adder_circ_n_right n'))))
end.
Next Obligation.
replace (S n' + (S n' + (S n' + (S n' + 0))))
with (4 + (n' + (n' + (n' + (n' + 0))))) by lia.
simpl. reflexivity.
Defined.
Next Obligation.
replace (S n' + (S n' + (S n' + (S n' + 0))))
with (4 + (n' + (n' + (n' + (n' + 0))))) by lia.
simpl. reflexivity.
Defined.
Next Obligation.
replace (n' + S (n' + S (n' + S (n' + 0))))
with (3 + (n' + (n' + (n' + (n' + 0))))) by lia.
simpl. reflexivity.
Defined.
Next Obligation.
replace (n' + S (n' + S (n' + 0))) with (2 + n' + (n' + (n' + 0))) by lia.
simpl. reflexivity.
Defined.
Program Fixpoint adder_circ_n (n : nat) : Box ((2+3*n) ⨂ Qubit) ((2+3*n) ⨂ Qubit) :=
match n with
| O => calc_id_circ
| S n' => (id_circ ∥ (id_circ ∥ (id_circ ∥ (id_circ ∥ (adder_circ_n_left n'))))) ;;
(adder_circ_1_with_pads (4*n')) ;;
(id_circ ∥ (id_circ ∥ (id_circ ∥ (id_circ ∥ (adder_circ_n_right n')))))
end.
Next Obligation.
replace (n' + S (n' + S (n' + 0)))
with (2 + (n' + (n' + (n' + 0)))) by lia.
simpl. reflexivity.
Defined.
Next Obligation.
replace (n' + S (n' + S (n' + 0)))
with (2 + (n' + (n' + (n' + 0)))) by lia.
simpl. reflexivity.
Defined.
Lemma adder_circ_n_left_WT : forall (n : nat),
Typed_Box (adder_circ_n_left n).
Proof.
induction n.
- unfold adder_circ_n_left. apply id_circ_WT.
- unfold adder_circ_n_left. simpl_eq.
apply inSeq_WT.
+ compile_typing True. unfold adder_circ_n_left in IHn.
program_simpl.
+ simpl_eq. apply inSeq_WT.
* apply strip_one_l_in_WT. apply inPar_WT.
{ apply boxed_gate_WT. }
{ simple_typing (inParMany_WT). }
* simpl_eq. apply adder_circ_1_with_pads_WT.
Qed.
Lemma adder_circ_n_right_WT : forall (n : nat),
Typed_Box (adder_circ_n_right n).
Proof.
induction n.
- unfold adder_circ_n_right. apply id_circ_WT.
- unfold adder_circ_n_right. simpl_eq.
apply inSeq_WT.
+ simpl_eq. apply carrier_circ_1_with_pads_WT.
+ simpl_eq. apply inSeq_WT.
* apply strip_one_l_out_WT. apply inPar_WT.
{ apply boxed_gate_WT. }
{ simple_typing (inParMany_WT). }
* simpl_eq. compile_typing True. unfold adder_circ_n_right in IHn.
program_simpl.
Qed.
Lemma adder_circ_n_WT : forall (n : nat),
Typed_Box (adder_circ_n n).
Proof.
induction n.
- unfold adder_circ_n. apply calc_id_circ_WT.
- unfold adder_circ_n. simpl_eq.
apply inSeq_WT.
+ simple_typing (adder_circ_n_left_WT).
+ apply inSeq_WT.
{ apply adder_circ_1_with_pads_WT. }
{ simple_typing (adder_circ_n_right_WT). }
Qed.
Open Scope matrix_scope.
(* For n-adder specification *)
(* Very simple pure state and mixed state tactics *)
Ltac show_pure :=
match goal with
| |- Pure_State ?A => apply pure_bool_to_matrix
| |- Pure_State ?A => apply pure0
| |- Pure_State ?A => apply pure1
| |- Pure_State ?A => apply pure_id1
end.
Ltac show_mixed :=
match goal with
| |- Mixed_State ?A => apply Pure_S; show_pure
end.
Lemma mixed_state_big_kron_ctx_to_mat_list : forall n f, Mixed_State (⨂ ctx_to_mat_list (list_of_Qubits n) f).
Proof.
induction n.
- intros. simpl. show_mixed.
- intros. simpl.
specialize (mixed_state_kron 2) as H. apply H.
+ show_mixed.
+ apply IHn.
Qed.
Fixpoint n_adder_cout_bexp (n m : nat) : bexp :=
match m with
| O => b_var (1+n+n+n)%nat (* cin = b_var (1+n+n+n)%nat *)
| S m' => let i := (n-m)%nat in
b_xor (b_and (n_adder_cout_bexp n m') (b_xor (b_var (3+i+i+i)%nat) (b_var (2+i+i+i)%nat))) (b_and (b_var (3+i+i+i)%nat) (b_var (2+i+i+i)%nat))
(* cin = n_adder_cout_bexp n m'
x = b_var (3+i+i+i)%nat
y = b_var (2+i+i+i)%nat *)
end.
Eval simpl in n_adder_cout_bexp 3 3.
Eval simpl in n_adder_cout_bexp 3 2.
Eval simpl in n_adder_cout_bexp 3 1.
Eval simpl in n_adder_cout_bexp 3 0.
Definition n_adder_sum_bexp (n m : nat) : bexp :=
match m with
| 0 => b_var (1+n+n+n)%nat (* cin = b_var (1+n+n+n)%nat *)
| S m' => let i := (n-m)%nat in
b_xor (n_adder_cout_bexp n m') (b_xor (b_var (3+i+i+i)%nat) (b_var (2+i+i+i)%nat))
(* cin = n_adder_cout_bexp n m'
x = b_var (3+i+i+i)%nat
y = b_var (2+i+i+i)%nat *)
end.
Eval simpl in n_adder_sum_bexp 3 3.
Eval simpl in n_adder_sum_bexp 3 2.
Eval simpl in n_adder_sum_bexp 3 1.
Eval simpl in n_adder_sum_bexp 3 0.
Fixpoint increase_vars_by (k : nat) (b : bexp) : bexp :=
match b with
| b_t => b_t
| b_f => b_f
| b_var x => b_var (k + x)%nat
| b_not b' => b_not (increase_vars_by k b')
| b_and b1 b2 => b_and (increase_vars_by k b1) (increase_vars_by k b2)
| b_xor b1 b2 => b_xor (increase_vars_by k b1) (increase_vars_by k b2)
end.
Lemma bexp_interpret_equiv_1 : forall (k : nat) (b : bexp) (f : Var -> bool),
⌈ b | fun x : Var => f (k + x)%nat ⌉
= ⌈ increase_vars_by k b | f ⌉.
Proof.
induction b.
- intros. simpl. reflexivity.
- intros. simpl. reflexivity.
- intros. simpl. reflexivity.
- intros. simpl. rewrite IHb. reflexivity.
- intros. simpl. rewrite IHb1. rewrite IHb2. reflexivity.
- intros. simpl. rewrite IHb1. rewrite IHb2. reflexivity.
Qed.
Lemma n_adder_cout_bexp_equiv_1 : forall (n m : nat),
(m <= n)%nat ->
increase_vars_by 3%nat (n_adder_cout_bexp n m) = n_adder_cout_bexp (S n) m.
Proof.
intros. generalize dependent n.
induction m.
- intros. simpl. replace (n + S n + S n)%nat with (2 + n + n + n)%nat by lia.
reflexivity.
- intros. simpl. rewrite IHm.
remember (n - S m)%nat as i.
replace (n - m)%nat with (1 + i)%nat by lia. simpl.
replace (i + S i + S i)%nat with (2 + i + i + i)%nat by lia. simpl.
reflexivity.
lia.
Qed.
Lemma n_adder_sum_bexp_equiv_1 : forall (n m : nat),
(m <= n)%nat ->
increase_vars_by 3%nat (n_adder_sum_bexp n m) = n_adder_sum_bexp (S n) m.
Proof.
intros. generalize dependent n.
induction m.
- intros. simpl. replace (n + S n + S n)%nat with (2 + n + n + n)%nat by lia.
reflexivity.
- intros. simpl. rewrite n_adder_cout_bexp_equiv_1.
remember (n - S m)%nat as i.
replace (n - m)%nat with (1 + i)%nat by lia. simpl.
replace (i + S i + S i)%nat with (2 + i + i + i)%nat by lia. simpl.
reflexivity.
lia.
Qed.
(* compute_adder_n_left
: Functional meaning of [adder_circ_n_left]
Input (list of bools of length 3n+1) : [z0 y0 x0 z1 y1 x1 ... zn yn xn cin]
Output (list of bools of length 4n+1) : [c0 z0 y0 x0 c1 z1 y1 x1 ... cn zn yn xn cin]
*)
Fixpoint compute_adder_n_left (n : nat) (f : Var -> bool) : Var -> bool :=
match n with
| 0 => f
| S n' =>
(fun x => match x with
| 0 => ⌈ n_adder_cout_bexp n n |
(fun i => match i with
| 0 => false
| S i' => f i'
end) ⌉
| 1 => (f 0) ⊕ ⌈ n_adder_sum_bexp n n |
(fun i => match i with
| 0 => false
| S i' => f i'
end) ⌉
| 2 => f 1
| 3 => f 2
| S (S (S (S x'))) => (compute_adder_n_left n' (fun i => f (3 + i))) x'
end)
end.
Definition compute_adder_n_left_inp_1 := (fun (x : Var) =>
match x with
| 0 => false
| 1 => true
| 2 => true
| 3 => true
| _ => false
end).
Eval compute in compute_adder_n_left 1 compute_adder_n_left_inp_1.
Lemma adder_circ_n_spec_left_1 : forall (n : nat) (f : Var -> bool),
let l1 := list_of_Qubits (1 + 3 * n) in
let l2 := list_of_Qubits (1 + 4 * n) in
⟦adder_circ_n_left n⟧ (ctx_to_matrix l1 f)
= (ctx_to_matrix l2 (compute_adder_n_left n f)).
Proof.
induction n.
- intros. unfold ctx_to_matrix. simpl.
remember id_circ_spec. simpl in *. apply e.
rewrite kron_1_r. apply WF_bool_to_matrix.
- intros. unfold list_of_Qubits in *.
Opaque compute_adder_n_left.
unfold adder_circ_n_left. unfold adder_circ_n_left in IHn.
Set Printing Implicit. show_dimensions. simpl_eq.
specialize inSeq_correct as IS. simpl in IS. rewrite IS. clear IS.
+ unfold compose_super.
simpl_eq. program_simpl.
replace (n + S (n + S (n + S (n + 0)))) with (3 + (n + (n + (n + (n + 0))))) by lia.
specialize inSeq_correct as IS. simpl in IS. rewrite IS. clear IS.
* unfold compose_super. simpl_eq. program_simpl.
replace (ctx_to_matrix l1 f) with (bool_to_matrix (f 0) ⊗ ctx_to_matrix (list_of_Qubits (3 + 3*n)) (fun x => f (S x))).
{ simpl. Set Printing All.
rewrite dim_eq_lemma_1.
specialize (inPar_correct
Qubit Qubit
(Tensor Qubit (Tensor Qubit (Tensor Qubit (NTensor (n + (n + (n + 0))) Qubit))))
(Tensor Qubit (Tensor Qubit (Tensor Qubit (NTensor (n + (n + (n + (n + 0)))) Qubit)))))
as IP.
simpl in IP. rewrite dim_eq_lemma_3 in IP.
unfold list_of_Qubits. unfold ctx_to_matrix. simpl.
rewrite dim_eq_lemma_2. rewrite dim_eq_lemma_1. rewrite IP. clear IP.
- specialize (inPar_correct
Qubit Qubit
(Tensor Qubit (Tensor Qubit (NTensor (n + (n + (n + 0))) Qubit)))
(Tensor Qubit (Tensor Qubit (NTensor (n + (n + (n + (n + 0)))) Qubit))))
as IP.
simpl in IP. rewrite dim_eq_lemma_3 in IP.
rewrite dim_eq_lemma_2. rewrite IP. clear IP.
+ specialize (inPar_correct
Qubit Qubit
(Tensor Qubit (NTensor (n + (n + (n + 0))) Qubit))
(Tensor Qubit (NTensor (n + (n + (n + (n + 0)))) Qubit)))
as IP.
simpl in IP. rewrite dim_eq_lemma_3 in IP.
rewrite IP. clear IP.
* replace (@kron
(S (S O)) (S (S O))
(Nat.pow (S (S O))
(Init.Nat.add n (Init.Nat.add n (Init.Nat.add n O))))
(Nat.pow (S (S O))
(Init.Nat.add n (Init.Nat.add n (Init.Nat.add n O))))
(bool_to_matrix (f 3))
(big_kron (ctx_to_mat_list (repeat (Some Qubit) (n + (n + (n + 0)))) (fun v : Var => f (S (S (S (S v)))))))) with
(ctx_to_matrix (repeat (Some Qubit) (1 + 3 * n)) (fun v : Var => f (S (S (S v))))).
{ simpl in *. rewrite IHn. clear IHn.
Unset Printing All. Unset Printing Implicit.
specialize id_circ_spec as Iid. simpl in Iid. repeat rewrite Iid. clear Iid.
Locate "⊗".
- rewrite strip_one_l_in_eq.
specialize (kron_1_l
(2 * (2 * (2 * 2 ^ ⟦ Some Qubit :: repeat (Some Qubit) (n + (n + (n + (n + 0)))) ⟧)))
(2 * (2 * (2 * 2 ^ ⟦ Some Qubit :: repeat (Some Qubit) (n + (n + (n + (n + 0)))) ⟧)))
(bool_to_matrix (f 0) ⊗ (bool_to_matrix (f 1) ⊗ (bool_to_matrix (f 2) ⊗ ctx_to_matrix (Some Qubit :: repeat (Some Qubit) (n + (n + (n + (n + 0))))) (compute_adder_n_left n (fun v : Var => f (S (S (S v))))))))) as IK.
simpl in IK.
Set Printing All. rewrite dim_eq_lemma_1 in IK. rewrite dim_eq_lemma_3.
rewrite <- IK. Unset Printing All. clear IK.
+ Set Printing Implicit. Check inPar_correct.
replace (n + S (n + S (n + S (n + 0)))) with (3 + (n + (n + (n + (n + 0))))) by lia.
simpl.
specialize (inPar_correct
One Qubit
(Tensor Qubit (NTensor (3 + (n + (n + (n + (n + 0))))) Qubit))
(Tensor Qubit (NTensor (3 + (n + (n + (n + (n + 0))))) Qubit))
init0 id_circ)
as IP.
simpl in IP. rewrite dim_eq_lemma_3 in IP.
rewrite dim_eq_lemma_2. rewrite IP. clear IP.
Unset Printing Implicit.
* specialize init0_spec as IG. simpl in IG. rewrite IG. clear IG.
specialize id_circ_spec as Iid. simpl in Iid. rewrite Iid. clear Iid.
{ Check adder_circ_1_with_pads_spec.
Set Printing Implicit.
specialize (adder_circ_1_with_pads_spec
(n + (n + (n + (n + 0))))
(fun x => match x with
| 0 => false
| 1 => f 0
| 2 => f 1
| 3 => f 2
| S (S (S (S x'))) => (compute_adder_n_left n (fun v : Var => f (S (S (S v))))) x'
end))
as IA. unfold ctx_to_matrix in IA. simpl in IA.
unfold ctx_to_matrix. simpl. Set Printing All.
unfold NTensor in IA. unfold NTensor.
rewrite dim_eq_lemma_1 in IA. rewrite dim_eq_lemma_2 in IA.
rewrite dim_eq_lemma_2. rewrite IA. clear IA. Unset Printing All.
repeat apply kron_eq_1.
- clear l1. clear l2.
Transparent compute_adder_n_left. simpl.
replace (n - n + (n - n) + (n - n)) with 0 by lia.
rewrite <- n_adder_cout_bexp_equiv_1; try apply Nat.le_refl.
rewrite <- bexp_interpret_equiv_1.
destruct n.
+ simpl. remember ((f 3 && f 2 ⊕ f 1) ⊕ (f 2 && f 1)).
destruct b; reflexivity.
+ simpl.
replace (n - n + (n - n) + (n - n)) with 0 by lia.
rewrite <- n_adder_cout_bexp_equiv_1; try apply Nat.le_refl.
rewrite <- bexp_interpret_equiv_1.
rewrite <- bexp_interpret_equiv_1.
simpl.
remember (((⌈ n_adder_cout_bexp n n |
fun x : Var => f (S (S (S (S (S x))))) ⌉
&& f 5 ⊕ f 4)
⊕ (f 5 && f 4) && f 2 ⊕ f 1) ⊕ (f 2 && f 1)).
destruct b; reflexivity.
- clear l1. clear l2.
Transparent compute_adder_n_left. simpl.
replace (n - n + (n - n) + (n - n)) with 0 by lia.
rewrite <- n_adder_cout_bexp_equiv_1; try apply Nat.le_refl.
rewrite <- bexp_interpret_equiv_1.
destruct n.
+ simpl. reflexivity.
+ simpl. replace (n - n + (n - n) + (n - n)) with 0 by lia.
rewrite <- n_adder_cout_bexp_equiv_1; try apply Nat.le_refl.
rewrite <- bexp_interpret_equiv_1.
rewrite <- bexp_interpret_equiv_1.
simpl. reflexivity.
- simpl. reflexivity.
- simpl. reflexivity.
- simpl. reflexivity.
- simpl. reflexivity.
}
clear l1. clear l2.
apply WF_kron; simpl; try rewrite dim_eq_lemma_3; try reflexivity; try apply WF_bool_to_matrix.
apply WF_kron; simpl; try rewrite dim_eq_lemma_3; try reflexivity; try apply WF_bool_to_matrix.
apply WF_kron; simpl; try rewrite dim_eq_lemma_3; try reflexivity; try apply WF_bool_to_matrix.
specialize (WF_ctx_to_matrix (@Some WType Qubit :: @repeat (option WType) (@Some WType Qubit) (n + (n + (n + (n + 0)))))) as IW.
simpl in IW. rewrite dim_eq_lemma_1 in IW. apply IW.
* apply (init_WT false).
* apply id_circ_WT.
* auto with wf_db.
* apply WF_kron; try reflexivity; try apply WF_bool_to_matrix.
apply WF_kron; try reflexivity; try apply WF_bool_to_matrix.
apply WF_kron; try reflexivity; try apply WF_bool_to_matrix.
specialize (WF_ctx_to_matrix (@Some WType Qubit :: @repeat (option WType) (@Some WType Qubit) (n + (n + (n + (n + 0)))))) as IW.
simpl in IW. rewrite dim_eq_lemma_1 in IW. apply IW.
+ apply WF_kron; try reflexivity; try apply WF_bool_to_matrix.
apply WF_kron; try reflexivity; try apply WF_bool_to_matrix.
apply WF_kron; try reflexivity; try apply WF_bool_to_matrix.
specialize (WF_ctx_to_matrix (@Some WType Qubit :: @repeat (option WType) (@Some WType Qubit) (n + (n + (n + (n + 0)))))) as IW.
simpl in IW. rewrite dim_eq_lemma_1 in IW. apply IW.
- apply WF_bool_to_matrix.
- apply WF_bool_to_matrix.
- apply WF_bool_to_matrix.
}
{ unfold ctx_to_matrix. simpl. rewrite dim_eq_lemma_2. reflexivity. }
* apply id_circ_WT.
* apply adder_circ_n_left_WT.
* apply WF_bool_to_matrix.
* specialize (WF_ctx_to_matrix (@Some WType Qubit :: @repeat (option WType) (@Some WType Qubit) (n + (n + (n + 0)))) (fun x => f (S (S (S x))))) as IW.
unfold ctx_to_matrix in IW. simpl in IW. rewrite dim_eq_lemma_1 in *. rewrite dim_eq_lemma_2 in *. apply IW.
+ apply id_circ_WT.