-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathUnitarySemantics.v
539 lines (498 loc) · 17.2 KB
/
UnitarySemantics.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
Require Import Denotation.
Open Scope matrix_scope.
(* Propositional version (in Set). Could also just have a unitary circuit type and a
(trivial) coercion from circuit. *)
Inductive Unitary_Circuit {W} : Circuit W -> Prop :=
| u_output : forall p, Unitary_Circuit (output p)
| u_gate : forall W' c (u : Unitary W') p,
(forall p', Unitary_Circuit (c p')) ->
Unitary_Circuit (gate (U u) p c).
Definition Unitary_Box {W} (b : Box W W) : Prop :=
match b with
| box c => forall p, (Unitary_Circuit (c p))
end.
Inductive Unitary_DB_Circuit {W} : DeBruijn_Circuit W -> Prop :=
| u_db_output : forall p, Unitary_DB_Circuit (db_output p)
| u_db_gate : forall W' c (u : Unitary W') p,
Unitary_DB_Circuit c ->
Unitary_DB_Circuit (db_gate (U u) p c).
Definition Unitary_DB_Box {W} (b : DeBruijn_Box W W) : Prop :=
match b with
| db_box _ c => Unitary_DB_Circuit c
end.
Fixpoint denote_u_db_circuit {W} (c : DeBruijn_Circuit W) : Square (2^(⟦W⟧)) :=
match c with
| db_output p => ⟦p⟧
| db_gate g p c => match g with
| U u => denote_u_db_circuit c × apply_unitary (⟦W⟧) u (pat_to_list p)
| _ => dummy_mat
end
| _ => dummy_mat
end.
Definition denote_u_db_box {W} (c : DeBruijn_Box W W) : Square (2^⟦W⟧) :=
match c with
| db_box _ c' => denote_u_db_circuit c'
end.
Lemma unitary_to_db : forall W Γ (c : Circuit W) , Unitary_Circuit c -> Unitary_DB_Circuit (hoas_to_db Γ c).
Proof.
intros W Γ c U.
gen Γ.
induction c; intros.
- simpl. constructor.
- simpl.
destruct (process_gate g p Γ) eqn:E.
dependent destruction U.
constructor.
apply H.
apply H0.
- inversion U.
Qed.
Lemma unitary_box_to_db : forall W (c : Box W W) , Unitary_Box c -> Unitary_DB_Box (hoas_to_db_box c).
Proof.
intros W c U.
unfold Unitary_Box, Unitary_DB_Box in *.
destruct c; simpl in *.
destruct (add_fresh W []).
apply unitary_to_db.
apply U.
Qed.
Definition denote_unitary_box {W} (c : Box W W) : Square (2^⟦W⟧) :=
denote_u_db_box (hoas_to_db_box c).
Lemma denote_unitary_box_eq : forall W safe (c : Box W W) ρ,
Unitary_Box c ->
denote_box safe c ρ = denote_unitary_box c × ρ × (denote_unitary_box c)†.
Proof.
intros W safe [c] ρ pf.
simpl in pf.
unfold denote_unitary_box, denote_box.
unfold denote_db_box.
unfold hoas_to_db_box.
destruct (add_fresh W []) as [p Γ].
specialize (pf p).
gen ρ.
induction (c p).
- unfold denote_u_db_box.
simpl.
rewrite pad_nothing.
reflexivity.
- intros ρ.
simpl.
dependent destruction pf.
simpl.
unfold compose_super, super.
rewrite Nat.add_sub.
rewrite H0 by auto.
unfold denote_u_db_box.
simpl.
unfold apply_U, super.
rewrite Mmult_adjoint.
repeat rewrite Mmult_assoc.
reflexivity.
- inversion pf.
Qed.
(* Example *)
Definition HZH : Box Qubit Qubit :=
box_ q ⇒ _H $ _Z $ _H $ q.
Lemma U_HZH : Unitary_Box HZH.
Proof. repeat constructor. Qed.
(***********************************************)
(** Isometry Semantics - adds init and assert **)
(** Corresponds to the safe density semantics **)
(***********************************************)
Inductive Isometry_Gate : forall W W', Gate W W' -> Prop :=
| iso_u : forall W u, Isometry_Gate W W (U u)
| iso_init0 : Isometry_Gate _ _ init0
| iso_init1 : Isometry_Gate _ _ init1
| iso_assert0 : Isometry_Gate _ _ assert0
| iso_assert1 : Isometry_Gate _ _ assert1.
Inductive Isometry_Circuit {W} : Circuit W -> Prop :=
| iso_output : forall p, Isometry_Circuit (output p)
| iso_gate : forall W' W'' c (g : Gate W' W'') p,
Isometry_Gate _ _ g ->
(forall p', Isometry_Circuit (c p')) ->
Isometry_Circuit (gate g p c).
Lemma Unitary_Circuit_is_Isometry : forall W (c : Circuit W),
Unitary_Circuit c -> Isometry_Circuit c.
Proof.
intros.
induction c as [p | W1 W2 g p c IH |].
- constructor.
- dependent destruction H.
constructor.
constructor.
intros p'.
apply IH.
apply H.
- inversion H.
Qed.
Definition Isometry_Box {W W'} (b : Box W W') : Prop :=
match b with
| box c => forall p, (Isometry_Circuit (c p))
end.
Inductive Isometry_DB_Circuit {W} : DeBruijn_Circuit W -> Prop :=
| iso_db_output : forall p, Isometry_DB_Circuit (db_output p)
| iso_db_gate : forall W' W'' c (g : Gate W' W'') p,
Isometry_Gate _ _ g ->
Isometry_DB_Circuit c ->
Isometry_DB_Circuit (db_gate g p c).
Definition Isometry_DB_Box {W W'} (b : DeBruijn_Box W W') : Prop :=
match b with
| db_box _ c => Isometry_DB_Circuit c
end.
Definition denote_init0 (n : nat) : Matrix (2^(n+1)) (2^n) :=
(I (2 ^ n) ⊗ ∣0⟩).
Definition denote_init1 (n : nat) : Matrix (2^(n+1)) (2^n) :=
(I (2 ^ n) ⊗ ∣1⟩).
Definition denote_assert0 (n k : nat) : Matrix (2^(n-1)) (2^n) :=
I (2 ^ k) ⊗ ⟨0∣ ⊗ I (2 ^ (n - k - 1)).
Definition denote_assert1 (n k : nat) : Matrix (2^(n-1)) (2^n) :=
I (2 ^ k) ⊗ ⟨1∣ ⊗ I (2 ^ (n - k - 1)).
(* n is the number of input wires *)
(* ⟦W⟧ is the number of output wires *)
(* The padding in db_output should be unnecessary in a well-typed circuit :
there the input should equal the output (if the right n was provided).
For now it's convenient for later proofs *)
Fixpoint denote_iso_db_circuit {W} (n : nat) (c : DeBruijn_Circuit W) :
Matrix (2^(⟦W⟧)) (2^n) :=
match c with
| db_output p => pad n (⟦p⟧)
| db_gate g p c => match g with
| U u => denote_iso_db_circuit n c × apply_unitary n u (pat_to_list p)
| init0 => (denote_iso_db_circuit (S n) c) × denote_init0 n
| init1 => (denote_iso_db_circuit (S n) c) × denote_init1 n
| assert0 => (denote_iso_db_circuit (n - 1)%nat c) × denote_assert0 n (hd O (pat_to_list p))
| assert1 => (denote_iso_db_circuit (n - 1)%nat c) × denote_assert1 n (hd O (pat_to_list p))
| _ => dummy_mat
end
| _ => dummy_mat
end.
Definition denote_iso_db_box {W W'} (c : DeBruijn_Box W W') : Matrix (2^⟦W'⟧) (2^⟦W⟧) :=
match c with
| db_box _ c' => denote_iso_db_circuit (⟦W⟧) c'
end.
Lemma isometry_to_db : forall W Γ (c : Circuit W) , Isometry_Circuit c -> Isometry_DB_Circuit (hoas_to_db Γ c).
Proof.
intros W Γ c U.
gen Γ.
induction c; intros.
- simpl. constructor.
- simpl.
destruct (process_gate g p Γ) eqn:E.
dependent destruction U.
constructor; trivial.
apply H.
apply H1.
- inversion U.
Qed.
Lemma isometry_box_to_db : forall W W' (c : Box W W') , Isometry_Box c -> Isometry_DB_Box (hoas_to_db_box c).
Proof.
intros W W' c U.
unfold Isometry_Box, Isometry_DB_Box in *.
destruct c; simpl in *.
destruct (add_fresh W []).
apply isometry_to_db.
apply U.
Qed.
Definition denote_isometry_box {W W'} (c : Box W W') :=
denote_iso_db_box (hoas_to_db_box c).
Lemma denote_unitary_isometry_box_eq : forall W (c : Box W W),
Unitary_Box c ->
denote_unitary_box c = denote_isometry_box c.
Proof.
intros W [f] pf.
unfold Unitary_Box in pf.
unfold denote_unitary_box, denote_isometry_box.
unfold hoas_to_db_box.
destruct (add_fresh W []) as [p Γ].
specialize (pf p).
remember (f p) as c. clear Heqc f p.
induction c.
- unfold denote_iso_db_box, denote_u_db_box.
simpl.
rewrite pad_nothing.
reflexivity.
- dependent destruction pf.
simpl in *.
rewrite H0; easy.
- inversion pf.
Qed.
Lemma denote_isometry_box_eq : forall W W' (c : Box W W') ρ,
Isometry_Box c ->
denote_box false c ρ = denote_isometry_box c × ρ × (denote_isometry_box c)†.
Proof.
intros W W' [f] ρ pf.
simpl in pf.
unfold denote_isometry_box, denote_box.
unfold denote_db_box.
unfold hoas_to_db_box.
Abort.
(*
(* new proof *)
rewrite add_fresh_split.
remember (add_fresh_state W []) as Γ.
remember (add_fresh_pat W []) as p.
specialize (size_fresh_ctx W []) as S__Γ.
rewrite <- HeqΓ in S__Γ. simpl in S__Γ.
clear HeqΓ Heqp.
specialize (pf p).
remember (f p) as c. clear Heqc f p. (* might want a general version - start here *)
gen W ρ Γ.
induction c.
- intros.
unfold denote_iso_db_box.
simpl. reflexivity.
- intros W ρ Γ SE.
simpl.
dependent destruction pf.
dependent destruction H0.
+ simpl.
unfold compose_super, super.
rewrite Nat.add_sub.
rewrite H; auto.
unfold denote_iso_db_box.
simpl.
unfold apply_U, super.
rewrite Mmult_adjoint.
repeat rewrite Mmult_assoc.
reflexivity.
+ simpl.
unfold compose_super, super.
rewrite Nat.sub_0_r.
replace (size_wtype W + 1)%nat with (⟦ W ⊗ Qubit⟧)%qc by easy.
rewrite H; auto.
2: rewrite size_ctx_app; simpl; auto.
unfold denote_iso_db_box.
simpl.
unfold apply_new0, denote_init0, super.
rewrite Nat.add_1_r.
repeat rewrite Mmult_adjoint.
remember (denote_iso_db_circuit (S (size_wtype W)) (hoas_to_db (Γ ++ [Some Qubit]) (c (qubit (length Γ))))) as A.
repeat rewrite Mmult_assoc.
Msimpl.
Set Printing All. (* This is terrible messy. Tactics needed *)
rewrite Nat.add_0_r.
match goal with
| [|- context[@adjoint ?a ?b (@kron ?c ?d ?e ?f ?B ?C)]] =>
replace (@adjoint a b (@kron c d e f B C)) with
(@adjoint (c*e) (d*f) (@kron c d e f B C))
end.
2: match goal with
| [|- @adjoint ?a ?b ?B = @adjoint ?a' ?b' ?B] =>
replace a with a' by unify_pows_two;
replace b with b' by unify_pows_two;
reflexivity
end.
rewrite kron_adjoint.
Msimpl.
unify_pows_two.
rewrite Nat.add_1_r.
replace (2 ^ S (size_wtype W))%nat with (2 ^ (size_wtype W) * 2)%nat by unify_pows_two.
repeat rewrite Mmult_assoc.
reflexivity.
Unset Printing All.
+ simpl.
unfold compose_super, super.
rewrite Nat.sub_0_r.
replace (size_wtype W + 1)%nat with (⟦ W ⊗ Qubit⟧)%qc by easy.
rewrite H; auto.
2: rewrite size_ctx_app; simpl; auto.
unfold denote_iso_db_box.
simpl.
unfold apply_new1, denote_init1, super.
rewrite Nat.add_1_r.
repeat rewrite Mmult_adjoint.
remember (denote_iso_db_circuit (S (size_wtype W)) (hoas_to_db (Γ ++ [Some Qubit]) (c (qubit (length Γ))))) as A.
repeat rewrite Mmult_assoc.
Msimpl.
rewrite Nat.add_0_r.
match goal with
| [|- context[@adjoint ?a ?b (@kron ?c ?d ?e ?f ?B ?C)]] =>
replace (@adjoint a b (@kron c d e f B C)) with
(@adjoint (c*e) (d*f) (@kron c d e f B C))
end.
2: match goal with
| [|- @adjoint ?a ?b ?B = @adjoint ?a' ?b' ?B] =>
replace a with a' by unify_pows_two;
replace b with b' by unify_pows_two;
reflexivity
end.
rewrite kron_adjoint.
Msimpl.
unify_pows_two.
rewrite Nat.add_1_r.
replace (2 ^ S (size_wtype W))%nat with (2 ^ (size_wtype W) * 2)%nat by unify_pows_two.
repeat rewrite Mmult_assoc.
reflexivity.
+ simpl.
unfold compose_super, super.
rewrite Nat.add_0_r.
replace (size_wtype W - 1)%nat with (⟦(size_wtype W - 1) ⨂ Qubit⟧)%qc.
Focus 2. rewrite size_ntensor. simpl. lia.
rewrite H; auto.
Focus 2. rewrite size_ntensor. simpl.
rewrite <- SE. rewrite Nat.mul_1_r. dependent destruction p.
eapply remove_qubit_pred.
(* nope. Need a lot more info about Γ. *)
Search size_ctx remove_pat.
lia.
simpl.
rewrite size_ntensor. simpl.
rewrite Nat.mul_1_r.
unfold denote_iso_db_box.
simpl.
unfold apply_assert0, denote_assert0, super.
remember (denote_iso_db_circuit (size_wtype W - 1) (hoas_to_db (remove_pat p Γ) (c ()))) as A.
remember (hd O (pat_to_list (subst_pat Γ p))) as k.
Msimpl.
match goal with
| [|- context[@adjoint ?a ?b (@kron ?c ?d ?e ?f ?B ?C)]] =>
replace (@adjoint a b (@kron c d e f B C)) with
(@adjoint (c*e) (d*f) (@kron c d e f B C))
end.
Focus 2.
match goal with
| [|- @adjoint ?a ?b ?B = @adjoint ?a' ?b' ?B] =>
replace a with a';
replace b with b';
unify_pows_two;
try reflexivity
end.
(* aha! issue. *)
(* We need premises about the contents of gamma being bounded *)
(* Specifically, k < [W] *)
(* We know from pat_to_list_bounded that k < [Γ] (or [Γ] = k = 0) *)
(* We also have size_ctx (add_fresh_state w Γ) = (size_ctx Γ + size_wtype w)%nat *)
(* old proof *)
destruct (add_fresh W []) as [p Γ].
specialize (pf p).
remember (f p) as c. clear Heqc f p. (* might want a general version - start here *)
gen W ρ Γ.
induction c.
- intros.
unfold denote_iso_db_box.
simpl. reflexivity.
- intros W ρ Γ.
simpl.
dependent destruction pf.
dependent destruction H0.
+ simpl.
unfold compose_super, super.
rewrite Nat.add_sub.
rewrite H by auto.
unfold denote_iso_db_box.
simpl.
unfold apply_U, super.
rewrite Mmult_adjoint.
repeat rewrite Mmult_assoc.
reflexivity.
+ simpl.
unfold compose_super, super.
rewrite Nat.sub_0_r.
replace (size_wtype W + 1)%nat with (⟦ W ⊗ Qubit⟧)%qc by easy.
rewrite H by auto.
unfold denote_iso_db_box.
simpl.
unfold apply_new0, denote_init0, super.
rewrite Nat.add_1_r.
repeat rewrite Mmult_adjoint.
remember (denote_iso_db_circuit (S (size_wtype W)) (hoas_to_db (Γ ++ [Some Qubit]) (c (qubit (length Γ))))) as A.
repeat rewrite Mmult_assoc.
Msimpl.
Set Printing All. (* This is terrible messy. Tactics needed *)
rewrite Nat.add_0_r.
match goal with
| [|- context[@adjoint ?a ?b (@kron ?c ?d ?e ?f ?B ?C)]] =>
replace (@adjoint a b (@kron c d e f B C)) with
(@adjoint (c*e) (d*f) (@kron c d e f B C))
end.
2: match goal with
| [|- @adjoint ?a ?b ?B = @adjoint ?a' ?b' ?B] =>
replace a with a' by unify_pows_two;
replace b with b' by unify_pows_two;
reflexivity
end.
rewrite kron_adjoint.
Msimpl.
unify_pows_two.
rewrite Nat.add_1_r.
replace (2 ^ S (size_wtype W))%nat with (2 ^ (size_wtype W) * 2)%nat by unify_pows_two.
repeat rewrite Mmult_assoc.
reflexivity.
Unset Printing All.
+ simpl.
unfold compose_super, super.
rewrite Nat.sub_0_r.
replace (size_wtype W + 1)%nat with (⟦ W ⊗ Qubit⟧)%qc by easy.
rewrite H by auto.
unfold denote_iso_db_box.
simpl.
unfold apply_new1, denote_init1, super.
rewrite Nat.add_1_r.
repeat rewrite Mmult_adjoint.
remember (denote_iso_db_circuit (S (size_wtype W)) (hoas_to_db (Γ ++ [Some Qubit]) (c (qubit (length Γ))))) as A.
repeat rewrite Mmult_assoc.
Msimpl.
rewrite Nat.add_0_r.
match goal with
| [|- context[@adjoint ?a ?b (@kron ?c ?d ?e ?f ?B ?C)]] =>
replace (@adjoint a b (@kron c d e f B C)) with
(@adjoint (c*e) (d*f) (@kron c d e f B C))
end.
2: match goal with
| [|- @adjoint ?a ?b ?B = @adjoint ?a' ?b' ?B] =>
replace a with a' by unify_pows_two;
replace b with b' by unify_pows_two;
reflexivity
end.
rewrite kron_adjoint.
Msimpl.
unify_pows_two.
rewrite Nat.add_1_r.
replace (2 ^ S (size_wtype W))%nat with (2 ^ (size_wtype W) * 2)%nat by unify_pows_two.
repeat rewrite Mmult_assoc.
reflexivity.
+ simpl.
unfold compose_super, super.
rewrite Nat.add_0_r.
Search size_wtype NTensor.
replace (size_wtype W - 1)%nat with (⟦(size_wtype W - 1) ⨂ Qubit⟧)%qc.
Focus 2. Search size_wtype NTensor. rewrite size_ntensor. simpl. lia.
rewrite H by auto.
simpl.
rewrite size_ntensor. simpl.
rewrite Nat.mul_1_r.
unfold denote_iso_db_box.
simpl.
unfold apply_assert0, denote_assert0, super.
remember (denote_iso_db_circuit (size_wtype W - 1) (hoas_to_db (remove_pat p Γ) (c ()))) as A.
remember (hd O (pat_to_list (subst_pat Γ p))) as k.
Msimpl.
match goal with
| [|- context[@adjoint ?a ?b (@kron ?c ?d ?e ?f ?B ?C)]] =>
replace (@adjoint a b (@kron c d e f B C)) with
(@adjoint (c*e) (d*f) (@kron c d e f B C))
end.
Focus 2.
match goal with
| [|- @adjoint ?a ?b ?B = @adjoint ?a' ?b' ?B] =>
replace a with a';
replace b with b';
unify_pows_two;
try reflexivity
end.
(* aha! issue. *)
(* We need premises about the contents of gamma being bounded *)
(* Specifically, k < [W] *)
(* We know from pat_to_list_bounded that k < [Γ] (or [Γ] = k = 0) *)
(* We also have size_ctx (add_fresh_state w Γ) = (size_ctx Γ + size_wtype w)%nat *)
Search pat_to_list.
Search add_fresh_state.
reflexivity.
match goal with
| [@Mmult ?a ?b ?c ]
Mmult_assoc.
apply f_equal2; trivial.
reflexivity.
- inversion pf.
Qed.
*)