-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathProportional.v
70 lines (62 loc) · 1.79 KB
/
Proportional.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
Require Export Matrix.
Require Import Setoid.
(** Relation for equality up to a global phase. *)
Definition proportional {m n : nat} (A B : Matrix m n) :=
exists θ, A = Cexp θ .* B.
Infix "∝" := proportional (at level 70).
Lemma proportional_refl : forall {m n} (A : Matrix m n), A ∝ A.
Proof.
intros. exists 0.
rewrite Cexp_0.
rewrite Mscale_1_l.
reflexivity.
Qed.
Lemma proportional_symm : forall {m n} (A B : Matrix m n), A ∝ B -> B ∝ A.
Proof.
intros.
destruct H as [θ H].
rewrite H.
exists (- θ)%R.
rewrite Mscale_assoc.
rewrite <- Cexp_add.
rewrite Rplus_opp_l.
rewrite Cexp_0.
rewrite Mscale_1_l.
reflexivity.
Qed.
Lemma proportional_trans : forall {m n} (A B C : Matrix m n),
A ∝ B -> B ∝ C -> A ∝ C.
Proof.
intros.
destruct H as [θab Hab].
destruct H0 as [θbc Hbc].
exists (θab + θbc)%R.
rewrite Hab, Hbc.
rewrite Mscale_assoc.
rewrite Cexp_add.
reflexivity.
Qed.
Lemma Mmult_proportional_compat : forall {m n o} (A A' : Matrix m n) (B B' : Matrix n o),
A ∝ A' -> B ∝ B' -> A × B ∝ A' × B'.
Proof.
intros.
destruct H as [θa Ha].
destruct H0 as [θb Hb].
subst.
unfold proportional.
rewrite Mscale_mult_dist_r.
rewrite Mscale_mult_dist_l.
rewrite Mscale_assoc.
exists (θb + θa)%R.
rewrite Cexp_add.
reflexivity.
Qed.
Add Parametric Relation (m n : nat) : (Matrix m n) (@proportional m n)
reflexivity proved by proportional_refl
symmetry proved by proportional_symm
transitivity proved by proportional_trans
as uc_equiv_rel.
Add Parametric Morphism (m n o : nat) : (@Mmult m n o)
with signature (@proportional m n) ==> (@proportional n o) ==>
(@proportional m o) as Mmult_mor.
Proof. intros x y H x0 y0 H0. apply Mmult_proportional_compat; easy. Qed.