-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLorenz attractor.py
66 lines (49 loc) · 1.81 KB
/
Lorenz attractor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import pylab
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
def f1(t, x, y, z): return sigma*(y-x)
def f2(t, x, y, z): return r*x-y-x*z
def f3(t, x, y, z): return x*y-b*z
sigma=10.
b=8/3.
r=28.
x_initial=1.
y_initial=1.
z_initial=1.
t_initial=0
t_final=100
h=0.001
def Runge(x_initial, y_initial, z_initial, t_initial, h, t_final):
time=list(np.arange(t_initial, t_final+h, h))
X=[x_initial]
Y=[y_initial]
Z=[z_initial]
for i in range(1, len(time)):
p=time[i-1]
q=X[i-1]
r=Y[i-1]
s=Z[i-1]
k11=h*f1(p, q, r, s)
k21=h*f2(p, q, r, s)
k31=h*f3(p, q, r, s)
k12=h*f1(p+h/2., q+k11/2., r+k21/2., s+k31/2.)
k22=h*f2(p+h/2., q+k11/2., r+k21/2., s+k31/2.)
k32=h*f3(p+h/2., q+k11/2., r+k21/2., s+k31/2.)
k13=h*f1(p+h/2., q+k12/2., r+k22/2., s+k32/2.)
k23=h*f2(p+h/2., q+k12/2., r+k22/2., s+k32/2.)
k33=h*f3(p+h/2., q+k12/2., r+k22/2., s+k32/2.)
k14=h*f1(p+h, q+k13, r+k23, s+k33)
k24=h*f2(p+h, q+k13, r+k23, s+k33)
k34=h*f3(p+h, q+k13, r+k23, s+k33)
X+=[X[i-1]+(k11+2*k12+2*k13+k14)/6., ]
Y+=[Y[i-1]+(k21+2*k22+2*k23+k24)/6., ]
Z+=[Z[i-1]+(k31+2*k32+2*k33+k34)/6., ]
fig=plt.figure()
ax=plt.axes(projection='3d')
ax.scatter3D(X, Y, Z, c=Z, cmap="Reds", s=10)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
plt.show()
Runge(x_initial, y_initial, z_initial, t_initial, h, t_final)