-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy patheval_ssdk.py
226 lines (184 loc) · 6.96 KB
/
eval_ssdk.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
from __future__ import print_function
from __future__ import absolute_import
import os
import numpy as np
import time
import logging
import argparse
from collections import OrderedDict
import faiss
import torch
import torch.nn as nn
from models import SupResNet, SSLResNet
from utils import (
get_features,
get_roc_sklearn,
get_pr_sklearn,
get_fpr,
get_scores_one_cluster,
sliceloader,
)
import data
# local utils for SSD evaluation
def get_scores(ftrain, ftest, food, args):
if args.clusters == 1:
return get_scores_one_cluster(ftrain, ftest, food, shrunkcov=True)
else:
assert False, "we don't support multi-cluster evaluation for ssd-k"
def get_clusters(ftrain, nclusters):
kmeans = faiss.Kmeans(
ftrain.shape[1], nclusters, niter=100, verbose=False, gpu=False
)
kmeans.train(np.random.permutation(ftrain))
_, ypred = kmeans.assign(ftrain)
return ypred
def get_scores_multi_cluster(ftrain, ftest, food, ypred):
xc = [ftrain[ypred == i] for i in np.unique(ypred)]
din = [
np.sum(
(ftest - np.mean(x, axis=0, keepdims=True))
* (
np.linalg.pinv(np.cov(x.T, bias=True)).dot(
(ftest - np.mean(x, axis=0, keepdims=True)).T
)
).T,
axis=-1,
)
for x in xc
]
dood = [
np.sum(
(food - np.mean(x, axis=0, keepdims=True))
* (
np.linalg.pinv(np.cov(x.T, bias=True)).dot(
(food - np.mean(x, axis=0, keepdims=True)).T
)
).T,
axis=-1,
)
for x in xc
]
din = np.min(din, axis=0)
dood = np.min(dood, axis=0)
return din, dood
def get_eval_results(ftrain, ftest, food_known, food_not_known, args):
"""
Calcuate OOD evaluation metric for given in-distribution and OOD dataloaders.
"""
# standardize data
ftrain /= np.linalg.norm(ftrain, axis=-1, keepdims=True) + 1e-10
ftest /= np.linalg.norm(ftest, axis=-1, keepdims=True) + 1e-10
food_known /= np.linalg.norm(food_known, axis=-1, keepdims=True) + 1e-10
food_not_known /= np.linalg.norm(food_not_known, axis=-1, keepdims=True) + 1e-10
m, s = np.mean(ftrain, axis=0, keepdims=True), np.std(ftrain, axis=0, keepdims=True)
ftrain = (ftrain - m) / (s + 1e-10)
ftest = (ftest - m) / (s + 1e-10)
food_known = (food_known - m) / (s + 1e-10)
food_not_known = (food_not_known - m) / (s + 1e-10)
dtest1, dood1 = get_scores(ftrain, ftest, food_not_known, args)
temp = np.copy(args.clusters)
args.clusters = 1
dtest2, dood2 = get_scores(food_known, ftest, food_not_known, args)
args.clusters = temp
dtest, dood = dtest1 - dtest2, dood1 - dood2
fpr95 = get_fpr(dtest, dood)
auroc, aupr = get_roc_sklearn(dtest, dood), get_pr_sklearn(dtest, dood)
return fpr95, auroc, aupr
def main():
parser = argparse.ArgumentParser(description="SSD evaluation")
parser.add_argument("--exp-name", type=str, default="temp_eval_ssd")
parser.add_argument(
"--training-mode", type=str, choices=("SimCLR", "SupCon", "SupCE")
)
parser.add_argument("--results-dir", type=str, default="./eval_results")
parser.add_argument("--arch", type=str, default="resnet50")
parser.add_argument("--classes", type=int, default=10)
parser.add_argument("--clusters", type=int, default=1)
parser.add_argument("--k", type=int, default=1)
parser.add_argument("--copies", type=int, default=10)
parser.add_argument("--dataset", type=str, default="cifar10")
parser.add_argument("--data-dir", type=str, default="./datasets")
parser.add_argument(
"--data-mode", type=str, choices=("org", "base", "ssl"), default="base"
)
parser.add_argument("--normalize", action="store_true", default=False)
parser.add_argument("--batch-size", type=int, default=256)
parser.add_argument("--size", type=int, default=32)
parser.add_argument("--gpu", type=str, default="0")
parser.add_argument("--ckpt", type=str, help="checkpoint path")
parser.add_argument("--seed", type=int, default=12345)
args = parser.parse_args()
device = "cuda:0"
assert args.ckpt, "Must provide a checkpint for evaluation"
if not os.path.isdir(args.results_dir):
os.mkdir(args.results_dir)
results_file = os.path.join(args.results_dir, args.exp_name + "_ssdk.txt")
logging.basicConfig(level=logging.INFO, format="%(message)s")
logger = logging.getLogger()
logger.addHandler(logging.FileHandler(results_file, "a"))
logger.info(args)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
# create model
if args.training_mode in ["SimCLR", "SupCon"]:
model = SSLResNet(arch=args.arch).eval()
elif args.training_mode == "SupCE":
model = SupResNet(arch=args.arch, num_classes=args.classes).eval()
else:
raise ValueError("Provide model class")
model.encoder = nn.DataParallel(model.encoder).to(device)
# load checkpoint
ckpt_dict = torch.load(args.ckpt, map_location="cpu")
if "model" in ckpt_dict.keys():
ckpt_dict = ckpt_dict["model"]
if "state_dict" in ckpt_dict.keys():
ckpt_dict = ckpt_dict["state_dict"]
model.load_state_dict(ckpt_dict)
# dataloaders
train_loader, test_loader, norm_layer = data.__dict__[args.dataset](
args.data_dir,
args.batch_size,
mode=args.data_mode,
normalize=args.normalize,
size=args.size,
)
features_train, labels_train = get_features(
model.encoder, train_loader
) # using feature befor MLP-head
features_test, _ = get_features(model.encoder, test_loader)
print("In-distribution features shape: ", features_train.shape, features_test.shape)
ds = ["cifar10", "cifar100", "svhn", "texture", "blobs"]
ds.remove(args.dataset)
for d in ds:
# Use ood data with mode="base"
_, ood_loader, _ = data.__dict__[d](
args.data_dir,
args.batch_size,
mode="base",
normalize=args.normalize,
norm_layer=norm_layer,
size=args.size,
)
ood_loader_k, ood_loader_not_k = sliceloader(
ood_loader,
norm_layer,
k=args.k,
copies=args.copies,
batch_size=args.batch_size,
size=args.size,
)
features_ood_k, _ = get_features(model.encoder, ood_loader_k)
features_ood_not_k, _ = get_features(model.encoder, ood_loader_not_k)
fpr95, auroc, aupr = get_eval_results(
np.copy(features_train),
np.copy(features_test),
np.copy(features_ood_k),
np.copy(features_ood_not_k),
args,
)
logger.info(
f"In-data = {args.dataset}, OOD = {d}, Clusters = {args.clusters}, FPR95 = {fpr95}, AUROC = {auroc}, AUPR = {aupr}"
)
if __name__ == "__main__":
main()