-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata_util.py
executable file
·294 lines (262 loc) · 10.9 KB
/
data_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities for downloading data from WMT, tokenizing, vocabularies."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gzip
import os
import re
import tarfile
import sys
from nltk.tokenize import word_tokenize
from six.moves import urllib
from tensorflow.python.platform import gfile
import tensorflow as tf
tf.app.flags.DEFINE_integer("en_vocab_size", 40000, "English vocabulary size.")
tf.app.flags.DEFINE_string("data_dir", "/tmp", "Data directory")
tf.app.flags.DEFINE_integer("max_train_data_size", 0,
"Limit on the size of training data (0: no limit).")
tf.app.flags.DEFINE_boolean("use_fp16", False,
"Train using fp16 instead of fp32.")
FLAGS = tf.app.flags.FLAGS
# Special vocabulary symbols - we always put them at the start.
_PAD = b"_PAD"
_GO = b"_GO"
_EOS = b"_EOS"
_UNK = b"_UNK"
_START_VOCAB = [_PAD, _GO, _EOS, _UNK]
PAD_ID = 0
GO_ID = 1
EOS_ID = 2
UNK_ID = 3
# Regular expressions used to tokenize.
_WORD_SPLIT = re.compile(b"([.,!?\"':;)(])")
_DIGIT_RE = re.compile(br"\d")
# URLs for WMT data.
_WMT_ENFR_TRAIN_URL = "http://www.statmt.org/wmt10/training-giga-fren.tar"
_WMT_ENFR_DEV_URL = "http://www.statmt.org/wmt15/dev-v2.tgz"
source_size = 40
def preprocess(text):
"""
Preprocess text for encoder
"""
tokens = word_tokenize(text)
return tokens
def gunzip_file(gz_path, new_path) :
"""Unzips from gz_path into new_path."""
print("Unpacking %s to %s" % (gz_path, new_path))
with gzip.open(gz_path, "rb") as gz_file :
with open(new_path, "wb") as new_file :
for line in gz_file :
new_file.write(line)
def basic_tokenizer(sentence) :
"""Very basic tokenizer: split the sentence into a list of tokens."""
words = []
for space_separated_fragment in sentence.strip().split() :
words.extend(_WORD_SPLIT.split(space_separated_fragment))
return [w for w in words if w]
def create_vocabulary(vocabulary_path, data_path, max_vocabulary_size,
tokenizer=None, normalize_digits=True) :
"""Create vocabulary file (if it does not exist yet) from data file.
Data file is assumed to contain one sentence per line. Each sentence is
tokenized and digits are normalized (if normalize_digits is set).
Vocabulary contains the most-frequent tokens up to max_vocabulary_size.
We write it to vocabulary_path in a one-token-per-line format, so that later
token in the first line gets id=0, second line gets id=1, and so on.
Args:
vocabulary_path: path where the vocabulary will be created.
data_path: data file that will be used to create vocabulary.
max_vocabulary_size: limit on the size of the created vocabulary.
tokenizer: a function to use to tokenize each data sentence;
if None, basic_tokenizer will be used.
normalize_digits: Boolean; if true, all digits are replaced by 0s.
"""
min_len = 10000000
max_len = 0
avg_len = 0.0
if gfile.Exists(vocabulary_path):
os.remove(vocabulary_path)
if not gfile.Exists(vocabulary_path) :
print("Creating vocabulary %s from data %s" % (vocabulary_path, data_path))
vocab = {}
with gfile.GFile(data_path, mode="rb") as f :
counter = 0
for line in f :
counter += 1
if counter % 10000 == 0 :
print(" processing line %d" % counter)
line = tf.compat.as_bytes(line)
tokens = tokenizer(line) if tokenizer else basic_tokenizer(line)
avg_len += len(tokens)
min_len = min(min_len, len(tokens))
max_len = max(max_len, len(tokens))
for w in tokens :
word = _DIGIT_RE.sub(b"0", w) if normalize_digits else w
if word in vocab :
vocab[word] += 1
else :
vocab[word] = 1
avg_len = avg_len/counter
print("avg length %f \tmin length %d\t max length %d" % (avg_len, min_len,
max_len))
vocab_list = _START_VOCAB + sorted(vocab, key=vocab.get, reverse=True)
if len(vocab_list) > max_vocabulary_size :
vocab_list = vocab_list[:max_vocabulary_size]
with gfile.GFile(vocabulary_path, mode="wb") as vocab_file :
for w in vocab_list :
vocab_file.write(w + b"\n")
return min_len, max_len, avg_len
def initialize_vocabulary(vocabulary_path) :
"""Initialize vocabulary from file.
We assume the vocabulary is stored one-item-per-line, so a file:
dog
cat
will result in a vocabulary {"dog": 0, "cat": 1}, and this function will
also return the reversed-vocabulary ["dog", "cat"].
Args:
vocabulary_path: path to the file containing the vocabulary.
Returns:
a pair: the vocabulary (a dictionary mapping string to integers), and
the reversed vocabulary (a list, which reverses the vocabulary mapping).
Raises:
ValueError: if the provided vocabulary_path does not exist.
"""
if gfile.Exists(vocabulary_path) :
rev_vocab = []
with gfile.GFile(vocabulary_path, mode="rb") as f :
rev_vocab.extend(f.readlines())
rev_vocab = [line.strip() for line in rev_vocab]
vocab = dict([(x, y) for (y, x) in enumerate(rev_vocab)])
return vocab, rev_vocab
else :
raise ValueError("Vocabulary file %s not found.", vocabulary_path)
def sentence_to_token_ids(sentence, vocabulary,
tokenizer=None, normalize_digits=True) :
"""Convert a string to list of integers representing token-ids.
For example, a sentence "I have a dog" may become tokenized into
["I", "have", "a", "dog"] and with vocabulary {"I": 1, "have": 2,
"a": 4, "dog": 7"} this function will return [1, 2, 4, 7].
Args:
sentence: the sentence in bytes format to convert to token-ids.
vocabulary: a dictionary mapping tokens to integers.
tokenizer: a function to use to tokenize each sentence;
if None, basic_tokenizer will be used.
normalize_digits: Boolean; if true, all digits are replaced by 0s.
Returns:
a list of integers, the token-ids for the sentence.
"""
if tokenizer :
words = tokenizer(sentence)
else :
words = basic_tokenizer(sentence)
if not normalize_digits :
return [vocabulary.get(w, UNK_ID) for w in words]
# Normalize digits by 0 before looking words up in the vocabulary.
return [vocabulary.get(_DIGIT_RE.sub(b"0", w), UNK_ID) for w in words]
def data_to_token_ids(data, vocab,
tokenizer=None, normalize_digits=True) :
"""Tokenize data file and turn into token-ids using given vocabulary file.
This function loads data line-by-line from data_path, calls the above
sentence_to_token_ids, and saves the result to target_path. See comment
for sentence_to_token_ids on the details of token-ids format.
Args:
data_path: path to the data file in one-sentence-per-line format.
target_path: path where the file with token-ids will be created.
vocabulary_path: path to the vocabulary file.
tokenizer: a function to use to tokenize each sentence;
if None, basic_tokenizer will be used.
normalize_digits: Boolean; if true, all digits are replaced by 0s.
"""
data_token_ids = []
#len_token_ids = []
print("Tokenizing data in %s" % data.__str__())
for counter, line in enumerate(data) :
print(" tokenizing line %d" % (counter+1))
token_ids = sentence_to_token_ids(tf.compat.as_bytes(line), vocab,
tokenizer, normalize_digits)
#len_token_ids.append(len(token_ids))
data_token_ids.append(token_ids)
#tokens_file.write(" ".join([str(tok) for tok in token_ids]) + "\n")
return data_token_ids#, len_token_ids
def pad_data(data, to_len):
# Decoder inputs get an extra "GO" symbol, and are padded then.
padded_data = []
for l in data:
decoder_pad_size = to_len - len(l) - 1
padded_data.append([GO_ID] + l +
[PAD_ID] * decoder_pad_size)
return padded_data
def prepare_data(data_dir, en_vocabulary_size, tokenizer=None) :
"""Get WMT data into data_dir, create vocabularies and tokenize data.
Args:
data_dir: directory in which the data sets will be stored.
en_vocabulary_size: size of the English vocabulary to create and use.
fr_vocabulary_size: size of the French vocabulary to create and use.
tokenizer: a function to use to tokenize each data sentence;
if None, basic_tokenizer will be used.
Returns:
A tuple of 6 elements:
(1) path to the token-ids for English training data-set,
(2) path to the token-ids for French training data-set,
(3) path to the token-ids for English development data-set,
(4) path to the token-ids for French development data-set,
(5) path to the English vocabulary file,
(6) path to the French vocabulary file.
"""
# Get wmt data to the specified directory.
train_path = ''
# Create vocabularies of the appropriate sizes.
en_vocab_path = os.path.join(data_dir, "vocab%d.en" % en_vocabulary_size)
create_vocabulary(en_vocab_path, train_path, en_vocabulary_size, tokenizer)
# Create token ids for the training data.
en_train_ids_path = train_path + (".ids%d.en" % en_vocabulary_size)
data_to_token_ids(train_path + ".en", en_train_ids_path, en_vocab_path, tokenizer)
return (en_train_ids_path, en_vocab_path)
def read_data(source_path, max_size=None) :
"""Read data from source and target files and put into buckets.
Args:
source_path: path to the files with token-ids for the source language.
target_path: path to the file with token-ids for the target language;
it must be aligned with the source file: n-th line contains the desired
output for n-th line from the source_path.
max_size: maximum number of lines to read, all other will be ignored;
if 0 or None, data files will be read completely (no limit).
Returns:
data_set: a list of length len(_buckets); data_set[n] contains a list of
(source, target) pairs read from the provided data files that fit
into the n-th bucket, i.e., such that len(source) < _buckets[n][0] and
len(target) < _buckets[n][1]; source and target are lists of token-ids.
"""
data_set = []
with tf.gfile.GFile(source_path, mode="r") as source_file :
source = source_file.readline()
counter = 0
while source and (not max_size or counter < max_size) :
counter += 1
if counter % 100000 == 0 :
print(" reading data line %d" % counter)
sys.stdout.flush()
source_ids = [int(x) for x in source.split()]
if len(source_ids) < source_size :
data_set.append([source_ids])
break
source = source_file.readline()
return data_set
if __name__ == '__main__' :
print("Preparing WMT data in %s" % FLAGS.data_dir)
en_train, _ = prepare_data(
FLAGS.data_dir, FLAGS.en_vocab_size)
train_set = read_data(en_train, FLAGS.max_train_data_size)