-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_summarization.py
545 lines (480 loc) · 26.6 KB
/
run_summarization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
import codecs
import random
from datetime import datetime
import glob
import json
import sys
import time
import os
import zipfile
import re
import shutil
import stat
import tensorflow as tf
import numpy as np
from collections import namedtuple
from data import Vocab
from model import SummarizationModel
from decode import BeamSearchDecoder
import util
from tensorflow.python import debug as tf_debug
from gpu_cluster import get_available_gpu, show_gpu_status, get_free_gpu
from util import bcolors, get_input_with_timeout
from exp_uploader import append_results, Exp, init_exp, heart_beat
import subprocess
FLAGS = tf.flags.FLAGS
# Where to find data
tf.flags.DEFINE_string('data_path', None, 'Path expression to train/decode data file.')
tf.flags.DEFINE_string('vocab_path', None, 'Path expression to text vocabulary file.')
tf.flags.DEFINE_string('eval_path', None, 'Path expression to eval data file.')
tf.flags.DEFINE_string('test_path', None, '')
tf.flags.DEFINE_string('pretrain_emb_pkl', None, '')
tf.flags.DEFINE_enum('data_type', 'json', ['bin', 'json'], 'file type of data file')
tf.flags.DEFINE_enum('lang', 'en', ['en', 'zh'], '')
tf.flags.DEFINE_string('json_input_key', 'content', '')
tf.flags.DEFINE_string('json_target_key', 'summary', '')
tf.flags.DEFINE_string('json_sent_key', 'sentences', '')
tf.flags.DEFINE_string('preprocessor', 'timeline', '')
tf.flags.DEFINE_string('string_split', 'space', 'string_split.')
# Important settings
tf.flags.DEFINE_enum('mode', 'train', ['train', 'decode', 'eval', 'auto_decode'], '')
tf.flags.DEFINE_boolean('single_pass', False,
'For decode mode only. If True, run eval on the full dataset using a fixed checkpoint, i.e. take the current checkpoint, and use it to produce one summary for each example in the dataset, write the summaries to file and then get ROUGE scores for the whole dataset. If False (default), run concurrent decoding, i.e. repeatedly load latest checkpoint, use it to produce summaries for randomly-chosen examples and log the results to screen, indefinitely.')
# Where to save output
tf.flags.DEFINE_string('proj_name', 'seq2seqV2', 'name of project.')
tf.flags.DEFINE_string('log_root', 'logs', 'Root directory for all logging.')
tf.flags.DEFINE_string('exp_name', None, 'Name for experiment. ')
# Hyperparameters
tf.flags.DEFINE_enum('encoder', 'rnn', ['mix', 'rnn', 'transformer'], '')
tf.flags.DEFINE_integer('hidden_dim', 128, 'dimension of RNN hidden states')
tf.flags.DEFINE_integer('emb_dim', 128, 'dimension of word embeddings')
tf.flags.DEFINE_integer('batch_size', 64, 'minibatch size')
tf.flags.DEFINE_integer('max_enc_steps', 400, 'max timesteps of encoder (max source text tokens)')
tf.flags.DEFINE_integer('max_dec_steps', 100, 'max timesteps of decoder (max summary tokens)')
tf.flags.DEFINE_integer('beam_size', 4, 'beam size for beam search decoding.')
tf.flags.DEFINE_integer('min_dec_steps', 20, 'Minimum sequence length of generated summary.')
tf.flags.DEFINE_integer('vocab_size', 50000, 'Size of vocabulary.')
tf.flags.DEFINE_float('lr', 0.15, 'learning rate')
tf.flags.DEFINE_float('adagrad_init_acc', 0.1, 'initial accumulator value for Adagrad')
tf.flags.DEFINE_float('rand_unif_init_mag', 0.02, 'magnitude for lstm cells random uniform inititalization')
tf.flags.DEFINE_float('trunc_norm_init_std', 1e-4, 'std of trunc norm init, used for initializing everything else')
tf.flags.DEFINE_float('max_grad_norm', 2.0, 'for gradient clipping')
tf.flags.DEFINE_integer('dataset_size', None, 'dataset_size')
tf.flags.DEFINE_enum('optimizer', 'adagrad', ['adagrad', 'adam'], 'decoder model type')
# hierarchical encoder settings
tf.flags.DEFINE_boolean('seq_clip', True, "clip the sequence length by HRED")
tf.flags.DEFINE_integer('max_art_lens', 8, 'max number of event')
tf.flags.DEFINE_integer('max_hredsent_lens', 50, 'max length of event')
tf.flags.DEFINE_integer('max_sen_len', 20, 'max number of event')
tf.flags.DEFINE_integer('max_ext_steps', 4, 'max timesteps of decoder (max summary tokens)')
tf.flags.DEFINE_integer('kernel_size', 25, 'max number of event')
tf.flags.DEFINE_integer('memory_layer', 3, 'memory layer num')
# Transformer hyperparameters
tf.flags.DEFINE_integer('num_layers', 4, 'The number of layers')
tf.flags.DEFINE_integer('num_units', 128, 'The number of hidden units')
tf.flags.DEFINE_integer('num_heads', 8, 'The number of heads in the multi-head attention')
tf.flags.DEFINE_integer('ffn_inner_dim', 512, 'The number of units of the inner linear transformation in the feed forward layer.')
tf.flags.DEFINE_float('dropout', 0.2, 'The probability to drop units from the outputs')
tf.flags.DEFINE_float('attention_dropout', 0.2, 'The probability to drop units from the attention')
tf.flags.DEFINE_float('relu_dropout', 0.2, 'The probability to drop units from the ReLU activation in the feed forward layer.')
# Pointer-generator or baseline model
tf.flags.DEFINE_boolean('pointer_gen', True, 'If True, use pointer-generator model. If False, use baseline model.')
tf.flags.DEFINE_boolean('decode_rouge', True, '')
tf.flags.DEFINE_boolean('decode_bleu', True, '')
tf.flags.DEFINE_boolean('eval_when_epoch_finish', False, '')
tf.flags.DEFINE_integer('eval_every_step', 10000, '')
tf.flags.DEFINE_boolean('decode_rouge_server', False, '')
# Coverage hyperparameters
tf.flags.DEFINE_boolean('coverage', False,
'Use coverage mechanism. Note, the experiments reported in the ACL paper train WITHOUT coverage until converged, and then train for a short phase WITH coverage afterwards. i.e. to reproduce the results in the ACL paper, turn this off for most of training then turn on for a short phase at the end.')
tf.flags.DEFINE_float('cov_loss_wt', 1.0,
'Weight of coverage loss (lambda in the paper). If zero, then no incentive to minimize coverage loss.')
# Utility flags, for restoring and changing checkpoints
tf.flags.DEFINE_boolean('convert_to_coverage_model', False,
'Convert a non-coverage model to a coverage model. Turn this on and run in train mode. Your current training model will be copied to a new version (same name with _cov_init appended) that will be ready to run with coverage flag turned on, for the coverage training stage.')
# Debugging. See https://www.tensorflow.org/programmers_guide/debugger
tf.flags.DEFINE_boolean('debug', False, "Run in tensorflow's debug mode (watches for NaN/inf values)")
tf.flags.DEFINE_integer('device', None, '')
tf.flags.DEFINE_integer('auto_decode_epoch_num', None, '')
tf.flags.DEFINE_boolean('plot_gradients', False, "plot the gradients on tensorboard")
tf.flags.DEFINE_string('current_source_code_zip', None, "current_source_code_zip")
tf.flags.mark_flag_as_required("data_path")
tf.flags.mark_flag_as_required("eval_path")
tf.flags.mark_flag_as_required("exp_name")
tf.flags.mark_flag_as_required("dataset_size")
tf.flags.register_validator('test_path',
lambda value: value is not None if FLAGS.mode == 'auto_decode' else True,
message='auto_decode test_path should not be empty')
tf.flags.register_validator('test_path',
lambda value: value is not None if FLAGS.eval_when_epoch_finish else True,
message='eval_when_epoch_finish test_path should not be empty ')
from text_batcher import Batcher
def convert_to_coverage_model():
"""Load non-coverage checkpoint, add initialized extra variables for coverage, and save as new checkpoint"""
tf.logging.info("converting non-coverage model to coverage model..")
# initialize an entire coverage model from scratch
sess = tf.Session(config=util.get_config())
print("initializing everything...")
sess.run(tf.global_variables_initializer())
# load all non-coverage weights from checkpoint
saver = tf.train.Saver([v for v in tf.global_variables() if "coverage" not in v.name and "Adagrad" not in v.name])
print("restoring non-coverage variables...")
curr_ckpt = util.load_ckpt(saver, sess)
print("restored.")
# save this model and quit
new_fname = curr_ckpt + '_cov_init'
print("saving model to %s..." % (new_fname))
new_saver = tf.train.Saver() # this one will save all variables that now exist
new_saver.save(sess, new_fname)
print("saved.")
exit()
def start_auto_decode_proc(epoch_num=None):
def run_command(command, stdout=None):
if stdout is None:
with open(os.devnull, 'w') as devnull:
child = subprocess.Popen(command, shell=True, stdout=devnull)
return child
else:
child = subprocess.Popen(command, shell=True, stdout=stdout)
return child
flag_str = ''
except_key = ['mode', 'data_path', 'log_root', 'h', 'help', 'helpfull', 'helpshort', 'device', 'vocab_path',
'test_path', 'eval_path']
for key, val in FLAGS.__flags.items():
val = val._value
if key not in except_key and val is not None:
flag_str += '--%s=%s ' % (key, val)
elif key == 'mode':
flag_str += '--mode=auto_decode '
elif key == 'data_path':
flag_str += '--data_path=%s ' % os.path.abspath(FLAGS.test_path)
elif key == 'test_path':
flag_str += '--test_path=%s ' % os.path.abspath(FLAGS.test_path)
elif key == 'vocab_path':
flag_str += '--vocab_path=%s ' % os.path.abspath(FLAGS.vocab_path)
elif key == 'eval_path':
flag_str += '--eval_path=%s ' % os.path.abspath(FLAGS.eval_path)
elif key == 'log_root':
flag_str += '--log_root=%s ' % os.path.abspath(os.path.join(FLAGS.log_root, '../'))
elif key == 'device':
flag_str += '--device=%d ' % get_free_gpu()
if epoch_num is not None:
flag_str += '--auto_decode_epoch_num=%d ' % epoch_num
source_code_path = os.path.join(os.path.abspath(os.path.dirname(FLAGS.current_source_code_zip)), 'train_code')
if os.path.exists(source_code_path):
shutil.rmtree(source_code_path)
zip_ref = zipfile.ZipFile(FLAGS.current_source_code_zip, 'r')
zip_ref.extractall(source_code_path)
zip_ref.close()
# child = run_command('unzip %s -d %s' % (FLAGS.current_source_code_zip, source_code_path))
# child.wait()
tf.logging.info('unzip source code finish!')
src_bleu = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'bleu')
dst_bleu = os.path.join(source_code_path, 'bleu')
os.symlink(src_bleu, dst_bleu)
tf.logging.info('making bleu symlink success!')
run_file_path = os.path.join(source_code_path, 'run_summarization.py')
tf.logging.debug(' '.join([sys.executable, run_file_path, flag_str]))
child = run_command(' '.join([sys.executable, run_file_path, flag_str]))
sys.stderr.write(' '.join([sys.executable, run_file_path, flag_str]) + '\n')
sys.stderr.flush()
def setup_training(model, batcher, eval_batcher):
"""Does setup before starting training (run_training)"""
train_dir = os.path.join(FLAGS.log_root, "train")
if not os.path.exists(train_dir): os.makedirs(train_dir)
init_exp(Exp(FLAGS.proj_name, FLAGS.exp_name, ' '.join(sys.argv)))
epoch_ckpt_dir = os.path.join(FLAGS.log_root, "epoch_ckpt")
if not os.path.exists(epoch_ckpt_dir): os.makedirs(epoch_ckpt_dir)
model.build_graph() # build the graph
if FLAGS.convert_to_coverage_model:
assert FLAGS.coverage, "To convert your non-coverage model to a coverage model, run with convert_to_coverage_model=True and coverage=True"
convert_to_coverage_model()
epoch_saver = tf.train.Saver(max_to_keep=99) # keep 3 checkpoints at a time
summary_writer = tf.summary.FileWriter(train_dir)
# summary_hook = tf.train.SummarySaverHook(save_secs=60, output_dir=train_dir,
# summary_writer=summary_writer, summary_op=model._summaries)
monitoredSession = tf.train.MonitoredTrainingSession(checkpoint_dir=train_dir,
save_checkpoint_secs=600, hooks=[], config=util.get_config())
tf.logging.info("Created session.")
try:
run_training(model, batcher, monitoredSession, summary_writer, eval_batcher, epoch_saver)
except KeyboardInterrupt:
tf.logging.info("Caught keyboard interrupt on worker. Stopping supervisor...")
batcher.close()
eval_batcher.close()
# monitoredSession.close()
def run_training(model, batcher, sess, summary_writer, eval_batcher, epoch_saver):
"""Repeatedly runs training iterations, logging loss to screen and writing summaries"""
tf.logging.info("starting run_training")
def get_session(sess):
session = sess
while type(session).__name__ != 'Session':
# pylint: disable=W0212
session = session._sess
return session
with sess:
if FLAGS.debug:
sess = tf_debug.LocalCLIDebugWrapperSession(sess)
sess.add_tensor_filter("has_inf_or_nan", tf_debug.has_inf_or_nan)
train_step = None
while not sess.should_stop():
batch = batcher.next_batch()
summary_flag = False
if train_step is not None and train_step % 20 == 0:
summary_flag = True
t0 = time.time()
results = model.run_train_step(sess, batch, summary_flag)
t1 = time.time()
train_step = results['global_step']
train_epoch = results['global_epoch']
if 'summaries' in results:
summaries = results['summaries']
summary_writer.add_summary(summaries, train_step)
# summary_writer.flush()
if train_step * FLAGS.batch_size > train_epoch * FLAGS.dataset_size:
epoch_num = sess.run(model.add_epoch_op, model._make_feed_dict(batch))
epoch_ckpt_dir = os.path.join(FLAGS.log_root, "epoch_ckpt")
epoch_saver.save(get_session(sess), os.path.join(epoch_ckpt_dir, 'ep{}'.format(epoch_num)))
# append_results(Exp(FLAGS.proj_name, FLAGS.exp_name, ' '.join(sys.argv)), 'epoch', str(epoch_num))
if FLAGS.eval_when_epoch_finish:
start_auto_decode_proc(epoch_num)
if train_step % 20 == 0:
loss = results['loss']
ext_loss = results['ext_loss']
con_loss = results['con_loss']
acc, precision, recall = results['metrics']
model.run_metrics(sess, batch)
tf.logging.info('epoch: %d | step: %d | loss: %.3f | ext_loss: %.3f | con_loss: %.3f | acc: %.3f | time: %.3f', train_epoch, train_step, loss, ext_loss, con_loss, acc, t1 - t0)
if not np.isfinite(loss):
raise Exception("Loss is not finite. Stopping.")
if FLAGS.coverage:
coverage_loss = results['coverage_loss']
tf.logging.info("coverage_loss: %f", coverage_loss)
if FLAGS.eval_every_step is not None and train_step % FLAGS.eval_every_step == 0 and train_step > 1:
start_auto_decode_proc()
def get_max_epoch_num(log_root):
"""
:param log_root:
:return:
"""
f = open(os.path.join(log_root, 'epoch_ckpt', 'checkpoint'))
line = f.readline()
f.close()
pattern = re.compile('model_checkpoint_path: "ep(\d*)"')
match = pattern.findall(line)
if match:
return int(match[0])
def select_decode_mode(placeholder_session, decode_model_hps, vocab, batcher, hps):
epoch_ckpt_path = os.path.join(FLAGS.log_root, 'epoch_ckpt')
if os.path.exists(epoch_ckpt_path):
decode_type = get_input_with_timeout('1. only decode newest checkpoint;2. decode all epoches ;3. decode selected epoch', 15, '1')
else:
decode_type = '1'
if decode_type == '1': # decode newest ckpt
model = SummarizationModel(decode_model_hps, vocab)
decoder = BeamSearchDecoder(model, batcher, vocab)
placeholder_session.close()
try:
final_metrics = decoder.decode()
auto_decoding(decoder, final_metrics)
except KeyboardInterrupt:
tf.logging.info('stop decoding!')
elif decode_type == '2':
metrics_file = open(os.path.join(FLAGS.log_root, 'epoch-metric.txt'), 'a', encoding='utf8')
model = SummarizationModel(decode_model_hps, vocab)
saver, session = None, None
placeholder_session.close()
for epoch_num in range(2, 99):
decoder = BeamSearchDecoder(model, batcher, vocab, 'epoch_ckpt', 'ep{}'.format(epoch_num), saver,
session)
saver = decoder._saver
session = decoder._sess
try:
final_metrics = decoder.decode()
auto_decoding(decoder, final_metrics)
if FLAGS.decode_bleu:
metrics_file.write('epoch ' + str(epoch_num) + ': ' + final_metrics['sys_bleu_perl'] + '\n')
metrics_file.flush()
batcher = Batcher(FLAGS.data_path, vocab, hps, single_pass=FLAGS.single_pass)
except KeyboardInterrupt:
tf.logging.info('stop decoding!')
break
elif decode_type == '3':
model = SummarizationModel(decode_model_hps, vocab)
max_epoch_num = get_max_epoch_num(FLAGS.log_root)
placeholder_session.close()
while True:
epoch_num = int(input('input epoch num (2~{})'.format(max_epoch_num)))
if epoch_num >= 2 or epoch_num <= max_epoch_num:
break
decoder = BeamSearchDecoder(model, batcher, vocab, 'epoch_ckpt', 'ep{}'.format(epoch_num))
try:
final_metrics = decoder.decode()
auto_decoding(decoder, final_metrics)
tf.logging.info(bcolors.OKGREEN + json.dumps(final_metrics) + bcolors.ENDC)
except KeyboardInterrupt:
tf.logging.info('stop decoding!')
else:
print('unknown decode type %s' % decode_type)
def auto_decoding(decoder, final_metrics):
if FLAGS.decode_bleu:
try:
append_results(Exp(FLAGS.proj_name, FLAGS.exp_name, ' '.join(sys.argv)),
'BLEU' + decoder._decode_dir_name, final_metrics['sys_bleu_perl'])
tf.logging.info(bcolors.OKGREEN + final_metrics['sys_bleu_perl'] + bcolors.ENDC)
with open(os.path.join(FLAGS.log_root, 'epoch-metric.txt'), 'a', encoding='utf8') as f:
f.write('%s BLEU' % decoder._decode_dir_name + '\n')
f.write(final_metrics['sys_bleu_perl'] + '\n')
except Exception as e:
tf.logging.error('decode_bleu error %s', e)
if FLAGS.decode_rouge:
try:
keys = ['rouge-1-f', 'rouge-2-f', 'rouge-L-f', 'rouge-1-r', 'rouge-2-r', 'rouge-L-r']
append_results(Exp(FLAGS.proj_name, FLAGS.exp_name, ' '.join(sys.argv)),
'LROUGE' + decoder._decode_dir_name, ' '.join(['%.5f' % final_metrics[k] for k in keys]))
with open(os.path.join(FLAGS.log_root, 'epoch-metric.txt'), 'a', encoding='utf8') as f:
f.write('%s ROUGE' % decoder._decode_dir_name + '\n')
f.write(json.dumps(final_metrics['rouge-dict']) + '\n')
if FLAGS.lang == 'zh':
keys = ['rouge-1-f-num', 'rouge-2-f-num', 'rouge-L-f-num', 'rouge-1-r-num', 'rouge-2-r-num',
'rouge-L-r-num']
append_results(Exp(FLAGS.proj_name, FLAGS.exp_name, ' '.join(sys.argv)),
'LROUGE-num' + decoder._decode_dir_name, ' '.join(['%.5f' % final_metrics[k] for k in keys]))
with open(os.path.join(FLAGS.log_root, 'epoch-metric.txt'), 'a', encoding='utf8') as f:
f.write('%s ROUGE-num' % decoder._decode_dir_name + '\n')
f.write(json.dumps(final_metrics['rouge-dict-num']) + '\n')
except Exception as e:
tf.logging.error('decode_rouge error %s', e)
def main(unused_argv):
np.random.seed(111)
random.seed(111)
tf.set_random_seed(111) # a seed value for randomness
# GPU tricks
if FLAGS.device is None:
index_of_gpu = get_available_gpu()
if index_of_gpu < 0:
index_of_gpu = ''
FLAGS.device = index_of_gpu
tf.logging.info(bcolors.OKGREEN + 'using {}'.format(FLAGS.device) + bcolors.ENDC)
else:
index_of_gpu = FLAGS.device
os.environ["CUDA_VISIBLE_DEVICES"] = str(index_of_gpu)
placeholder_session = None
if FLAGS.mode == 'auto_decode':
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import logging
log = logging.getLogger('tensorflow')
log.setLevel(logging.FATAL)
for h in log.handlers:
log.removeHandler(h)
log.addHandler(logging.NullHandler())
else:
from tensorflow.python.platform import tf_logging
import logging
tf_logging._logger.handlers[0].setFormatter(
logging.Formatter('%(asctime)s %(levelname)s %(message)s'))
tf.logging.info('try to occupy GPU memory!')
config = tf.ConfigProto(allow_soft_placement=True)
config.gpu_options.per_process_gpu_memory_fraction = 0.8
placeholder_session = tf.Session(config=config)
limit = placeholder_session.run(tf.contrib.memory_stats.BytesLimit()) / 1073741824
tf.logging.info('occupy GPU memory %f GB', limit)
gpu_info = show_gpu_status()
gpu = [gpu_info[k] for k in gpu_info.keys() if gpu_info[k]['index'] == index_of_gpu][0]
tf.logging.info('\napps on GPU {}\n'.format(index_of_gpu) + '\n'.join(
[gpu['apps'][pid]['user'] + '\t' + str(gpu['apps'][pid]['memory']) for pid in gpu['apps'].keys()]))
if len(unused_argv) != 1: # prints a message if you've entered flags incorrectly
raise Exception("Problem with flags: %s" % unused_argv)
tf.logging.set_verbosity(tf.logging.INFO) # choose what level of logging you want
tf.logging.info('Starting seq2seq_attention in %s mode...', (FLAGS.mode))
# Change log_root to FLAGS.log_root/FLAGS.exp_name and create the dir if necessary
FLAGS.log_root = os.path.join(FLAGS.log_root, FLAGS.exp_name)
if not os.path.exists(FLAGS.log_root):
if FLAGS.mode == "train":
os.makedirs(FLAGS.log_root)
else:
raise Exception("Logdir %s doesn't exist. Run in train mode to create it." % (FLAGS.log_root))
vocab = Vocab(FLAGS.vocab_path, FLAGS.vocab_size) # create a vocabulary
# If in decode mode, set batch_size = beam_size
# Reason: in decode mode, we decode one example at a time.
# On each step, we have beam_size-many hypotheses in the beam, so we need to make a batch of these hypotheses.
if 'decode' in FLAGS.mode:
FLAGS.batch_size = FLAGS.beam_size
FLAGS.single_pass = True
FLAGS.dataset_size = -1
# If single_pass=True, check we're in decode mode
if FLAGS.single_pass and 'decode' not in FLAGS.mode:
raise Exception("The single_pass flag should only be True in decode mode")
# Make a namedtuple hps, containing the values of the hyperparameters that the model needs
hparam_list = ['mode', 'lr', 'adagrad_init_acc', 'rand_unif_init_mag', 'trunc_norm_init_std', 'max_grad_norm',
'hidden_dim', 'emb_dim', 'batch_size', 'max_dec_steps', 'max_enc_steps', 'coverage', 'cov_loss_wt',
'max_art_lens', 'max_hredsent_lens', 'pointer_gen', 'max_ext_steps']
hps_dict = {}
export_json = {}
for key, val in FLAGS.__flags.items():
val = val._value
export_json[key] = val
if key in hparam_list:
hps_dict[key] = val
tf.logging.info('{} {}'.format(key, val))
for val in FLAGS: # for each flag // New modification for TF 1.5
if val in hparam_list: # if it's in the list
hps_dict[val] = FLAGS[val].value # add it to the dict // New modification for TF 1.5
hps = namedtuple("HParams", hps_dict.keys())(**hps_dict)
######################
# save parameters and python script
######################
# save parameters
tf.logging.info('saving parameters')
current_time_str = datetime.now().strftime('%m-%d-%H-%M')
json_para_file = open(os.path.join(FLAGS.log_root, 'flags-' + current_time_str + '-' + FLAGS.mode + '.json'), 'w')
json_para_file.write(json.dumps(export_json, indent=4) + '\n')
json_para_file.close()
# save python source code
FLAGS.current_source_code_zip = os.path.abspath(os.path.join(FLAGS.log_root, 'source_code_bak-' + current_time_str + '-' + FLAGS.mode + '.zip'))
tf.logging.info('saving source code: %s', FLAGS.current_source_code_zip)
python_list = glob.glob('./*.py')
zip_file = zipfile.ZipFile(FLAGS.current_source_code_zip, 'w')
for d in python_list:
zip_file.write(d)
for d in glob.glob('data_process/*.py'):
zip_file.write(d)
for d in glob.glob('opennmt/*.py'):
zip_file.write(d)
for d in glob.glob('opennmt/*/*.py'):
zip_file.write(d)
zip_file.close()
# Create a batcher object that will create minibatches of data
batcher = Batcher(FLAGS.data_path, vocab, hps, single_pass=FLAGS.single_pass)
if FLAGS.mode == 'train':
tf.logging.info("creating model...")
model = SummarizationModel(hps, vocab)
eval_batcher = Batcher(FLAGS.eval_path, vocab, hps, False)
placeholder_session.close()
setup_training(model, batcher, eval_batcher)
elif FLAGS.mode == 'decode':
st = os.stat("bleu/multi-bleu-yiping.perl")
os.chmod("bleu/multi-bleu-yiping.perl", st.st_mode | stat.S_IRGRP | stat.S_IRUSR | stat.S_IROTH |
stat.S_IXGRP | stat.S_IXOTH | stat.S_IXUSR)
decode_model_hps = hps._replace(max_dec_steps=1, max_ext_steps=1)
select_decode_mode(placeholder_session, decode_model_hps, vocab, batcher, hps)
elif FLAGS.mode == 'auto_decode':
tf.logging.info(bcolors.REDBACK + "start auto decode! " + os.environ["CUDA_VISIBLE_DEVICES"] + bcolors.ENDC)
st = os.stat("bleu/multi-bleu-yiping.perl")
os.chmod("bleu/multi-bleu-yiping.perl", st.st_mode | stat.S_IRGRP | stat.S_IRUSR | stat.S_IROTH |
stat.S_IXGRP | stat.S_IXOTH | stat.S_IXUSR)
decode_model_hps = hps._replace(max_dec_steps=1, max_ext_steps=1)
model = SummarizationModel(decode_model_hps, vocab)
if FLAGS.auto_decode_epoch_num is None:
decoder = BeamSearchDecoder(model, batcher, vocab)
else:
decoder = BeamSearchDecoder(model, batcher, vocab, 'epoch_ckpt', 'ep{}'.format(FLAGS.auto_decode_epoch_num))
try:
final_metrics = decoder.decode()
auto_decoding(decoder, final_metrics)
except KeyboardInterrupt:
tf.logging.info('stop decoding!')
else:
raise ValueError("The 'mode' flag must be one of train/eval/decode/auto_decode")
if __name__ == '__main__':
tf.app.run()