-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathminiwiki_main.py
164 lines (152 loc) · 6.83 KB
/
miniwiki_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
from learners.maml_learner import PAC_MAML_l2l
from learners.fli_learner import FMRL_l2l
from loss import ScaledCrossEntropyLoss as SCEL
from loss import kl_inv_l
import learn2learn as l2l
from models.miniwiki_models import MiniWikiModel, SMiniWikiModel
from data_generators.miniwiki_data import load_to_device, load_pb_to_device, create_folders
import warnings
import torch
import argparse
import numpy as np
import random
warnings.filterwarnings("ignore")
params = {}
parser = argparse.ArgumentParser()
parser.add_argument('--method', help="[\'maml\', \'pac_bus\', \'mr_maml\', \'fli_batch\']", default=None)
parser.add_argument('--prior', help="[\'train\', \'load\', default=None]", default=None)
parser.add_argument('--size', help="[\'small\', default=\'full\']", default='full')
parser.add_argument('--verbose', help="[\'True\', default=False]", default='False')
parser.add_argument('--num_val', help="Number of iterations for sample convergence bound", default=1)
parser.add_argument('--trials', help="[\'full\', default='test\']", default='test')
args = parser.parse_args()
if args.method not in ['maml', 'pac_bus', 'mr_maml', 'fli_batch']:
print("invalid options")
exit()
########################################################################################################################
MS = [1, 3, 5]
trials = [1, 2, 3, 4, 5] if args.trials == 'full' else ['test']
num_validation = int(args.num_val)
########################################################################################################################
method = args.method
prior = args.prior
verbose = True if args.verbose == "True" else False
learner_class = PAC_MAML_l2l if method != 'fli_batch' else FMRL_l2l
train_prior = prior is not None
if method == 'maml':
epochsbs = [2, 5, 8]
lrbs = [2.5, 5, 5]
elif method == 'pac_bus':
epochsbs = [2, 4, 5] if train_prior else [5, 5, 5]
lrbs = [2.5, 5, 5]
elif method == 'mr_maml':
epochsbs = [2, 5, 8] if train_prior else [15, 10, 8]
lrbs = [2.5, 5, 5]
else: # method == 'fli_batch
epochsbs = [1, 1, 1]
epsilons = [0.2, 0.02, 0.002] # FLI-Batch
lrbs = [7, 7, 7] # FLI-Batch
seed = 42
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
epochsms = [1, 1, 1]
if method == 'maml' or method == 'fli_batch':
bmodel_class = MiniWikiModel
p_epochsbs = [2, 5, 8]
p_epochsms = [5, 4, 3] if method != 'fli_batch' else [5, 20, 50]
else:
bmodel_class = SMiniWikiModel
p_epochsbs = [2, 5, 8]
p_epochsms = [10, 8, 5]
########################################################################################################################
DIM = 50
NCLS = 4
radius = 1
num_pr = 30 if args.size == 'small' else 100
num_tr = 50 if args.size == 'small' else 1000
num_te = 20 if args.size == 'small' else 200
########################################################################################################################
device = torch.device('cpu')
params['device'] = device
params['batch_size'] = 10
params['delta'] = torch.tensor(0.01)
params['method'] = method
params['logvar'] = -2
params['gamma'] = 1.1
params['weights_dir'] = 'Weights/'
params['sgm'] = False # false implies we will use GD instead of SGM
params['case'] = 'batch' # 'batch' 'FAL' 'online'
params['lrm'] = 0.1
########################################################################################################################
criterion = SCEL(NCLS, radius)
create_folders((params['weights_dir'],))
########################################################################################################################
for i, M in enumerate(MS):
if M == 0:
continue
if method == 'fli_batch':
params['epsilon'] = epsilons[i]
score = []
testloss = []
bound = []
if verbose: print(" M =", M)
for t in trials:
if verbose: print(" trial =", t)
corpus = str(t) + '_ncls' + str(NCLS) + 'm' + str(M)
model_name = method + '_m' + str(M)
params['version'] = model_name
params['prior_version'] = 'prior_' + model_name
w2v, X_te = load_to_device(device, corpus, 'test', DIM, NCLS, M, num_tasks=num_te, w2v=None)
bmodel = bmodel_class(DIM, NCLS, radius)
bmodel.init_logvar(logvar=params['logvar'])
model = l2l.algorithms.MAML(bmodel, lr=lrbs[i], first_order=False, allow_nograd=True)
plearner = PAC_MAML_l2l(model, criterion, params)
learner = learner_class(model, criterion, params)
if prior == 'train':
if verbose: print("Training prior")
_, X_tr_p = load_to_device(device, corpus, 'prior', DIM, NCLS, M, num_tasks=num_pr, w2v=w2v)
_, X_tr = load_to_device(device, corpus, 'train', DIM, NCLS, M, num_tasks=num_tr, w2v=w2v)
if method == 'fli_batch':
learner.meta_fit(*X_tr_p, verbose=verbose, epochsm=p_epochsms[i], lrm=epsilons[i])
else:
plearner.meta_fit(*X_tr_p, verbose=verbose, epochsm=p_epochsms[i], epochsb=p_epochsbs[i], batch_size=10)
params['num_tasks'] = num_tr
elif prior == 'load':
if verbose: print("Loading prior")
_, X_tr = load_to_device(device, corpus, 'train', DIM, NCLS, M, num_tasks=num_tr, w2v=w2v)
plearner.load_weights(version=params['prior_version'])
params['num_tasks'] = num_tr
else:
if verbose: print("Will not use prior")
_, X_tr = load_pb_to_device(device, corpus, 'prior', 'train', DIM, NCLS, M, num_tasks1=num_pr, num_tasks2=num_tr, w2v=w2v)
params['num_tasks'] = num_tr + num_pr
plearner.model.init_logvar(logvar=params['logvar'])
plearner.save_weights(version=params['prior_version'])
if verbose: print("Training model")
if method == 'fli_batch':
learner.meta_fit(*X_tr, verbose=verbose, epochsm=epochsms[i], lrm=epsilons[i])
else:
learner.meta_fit(*X_tr, verbose=verbose, epochsm=epochsms[i], epochsb=epochsbs[i], batch_size=None)
if verbose: print("Scoring model")
if method == 'fli_batch':
s, tl, b = learner.meta_score(*X_te)
elif method == 'maml':
s, tl, _ = learner.meta_score(*X_te, epochsb=epochsbs[i])
b = 1
elif method == 'mr_maml' or method == 'pac_bus':
s, tl, _ = learner.meta_score(*X_te, epochsb=epochsbs[i])
params['delta'] = torch.tensor(0.009).to(device)
deltap = 0.001
_, loss, regularizer = learner.meta_score(*X_tr, epochsb=epochsbs[i], num_iters=num_validation)
rg = np.log(2/deltap)/num_validation
lossbound = kl_inv_l(loss, rg)
b = lossbound + regularizer
else:
s, tl, b = 0, 1, 1
score.append(s)
testloss.append(tl)
bound.append(b)
print("score =", score)
print("testloss =", testloss)
print("bound =", bound)