-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathutp_cml.thy
272 lines (239 loc) · 28 KB
/
utp_cml.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
section \<open> COMPASS Modelling Language \<close>
theory utp_cml
imports "UTP1-Reactive-Designs.utp_rea_designs" "UTP1.utp_full"
begin
subsection \<open> Preliminaries \<close>
datatype '\<theta> tevent = Tock "'\<theta> set" | Event '\<theta>
type_synonym ('\<sigma>,'\<theta>) st_cml = "('\<sigma>, '\<theta> tevent list, unit) rsp"
type_synonym ('\<sigma>,'\<theta>) cmlact = "('\<sigma>,'\<theta>) st_cml hrel"
type_synonym ('a,'\<sigma>,'\<theta>) expr_cml = "('a, ('\<sigma>,'\<theta>) st_cml \<times> ('\<sigma>,'\<theta>) st_cml) uexpr"
fun events :: "'\<theta> tevent list \<Rightarrow> '\<theta> tevent list" where
"events [] = []" |
"events (Tock A # t) = events t" |
"events (Event x # t) = (Event x # events t)"
lemma events_append [simp]: "events (xs @ ys) = events(xs) @ events(ys)"
apply (induct xs, simp_all)
apply (rename_tac x xs)
apply (case_tac x)
apply (simp_all)
done
fun tocks :: "'\<theta> tevent list \<Rightarrow> '\<theta> tevent list" where
"tocks [] = []" |
"tocks (Tock A # xs) = Tock A # tocks xs" |
"tocks (Event x # xs) = tocks xs"
fun refusals :: "'\<theta> tevent list \<Rightarrow> '\<theta> set" where
"refusals [] = {}" |
"refusals (Tock A # t) = A \<union> refusals t" |
"refusals (Event x # t) = refusals t"
fun idleprefix :: "'\<theta> tevent list \<Rightarrow> '\<theta> tevent list" where
"idleprefix [] = []" |
"idleprefix (Tock A # t) = (Tock A # idleprefix t)" |
"idleprefix (Event x # t) = []"
definition "idlesuffix = idleprefix \<circ> rev"
syntax
"_events" :: "logic \<Rightarrow> logic" ("events\<^sub>u'(_')")
"_tocks" :: "logic \<Rightarrow> logic" ("tocks\<^sub>u'(_')")
"_refusals" :: "logic \<Rightarrow> logic" ("refusals\<^sub>u'(_')")
"_idleprefix" :: "logic \<Rightarrow> logic" ("idleprefix\<^sub>u'(_')")
"_idlesuffix" :: "logic \<Rightarrow> logic" ("idlesuffix\<^sub>u'(_')")
"_ev" :: "logic \<Rightarrow> logic" ("ev\<^sub>u'(_')")
"_tock" :: "logic \<Rightarrow> logic \<Rightarrow> logic" ("tock\<^sub>u'(_,_')")
translations
"events\<^sub>u(t)" == "CONST uop CONST events t"
"tocks\<^sub>u(t)" == "CONST uop CONST tocks t"
"refusals\<^sub>u(t)" == "CONST uop CONST refusals t"
"idleprefix\<^sub>u(t)" == "CONST uop CONST idleprefix t"
"idlesuffix\<^sub>u(t)" == "CONST uop CONST idlesuffix t"
"ev\<^sub>u(e)" == "CONST uop CONST Event e"
"tock\<^sub>u(t,A)" == "CONST bop CONST Tock t A"
subsection \<open> Signature \<close>
abbreviation time_length :: "(nat,'\<sigma>,'\<theta>) expr_cml" ("\<^bold>l")
where "\<^bold>l \<equiv> U(length(tocks(&tt)))"
abbreviation CML :: "(('\<sigma>, '\<phi>) st_cml \<times> ('\<sigma>, '\<phi>) st_cml) health"
where "CML \<equiv> SRD"
abbreviation Skip :: "('\<sigma>,'\<theta>) cmlact" where
"Skip \<equiv> II\<^sub>R"
abbreviation Assigns :: "'\<sigma> usubst \<Rightarrow> ('\<sigma>,'\<theta>) cmlact" ("\<langle>_\<rangle>\<^sub>C") where
"Assigns \<sigma> \<equiv> \<langle>\<sigma>\<rangle>\<^sub>R"
definition Stop :: "('\<sigma>,'\<theta>) cmlact" where
[upred_defs]: "Stop = \<^bold>R\<^sub>s(true \<turnstile> U(events(&tt) = []) \<diamondop> false)"
definition DoCML :: "('\<theta>, '\<sigma>) uexpr \<Rightarrow> ('\<sigma>,'\<theta>) cmlact" where
[upred_defs]:
"DoCML a = \<^bold>R\<^sub>s(true \<turnstile> U(events(&tt) = [] \<and> \<lceil>a\<rceil>\<^sub>S\<^sub>< \<notin> refusals(&tt))
\<diamondop> U(&tt = idleprefix(&tt) @ [Event(\<lceil>a\<rceil>\<^sub>S\<^sub><)]
\<and> $st\<acute> = $st \<and> \<lceil>a\<rceil>\<^sub>S\<^sub>< \<notin> refusals(&tt)))"
definition Wait :: "(nat, '\<sigma>) uexpr \<Rightarrow> ('\<sigma>,'\<theta>) cmlact" where
[upred_defs, rdes_def]:
"Wait n = \<^bold>R\<^sub>s(true \<turnstile> U(events(&tt) = [] \<and> length(&tt) < \<lceil>n\<rceil>\<^sub>S\<^sub><)
\<diamondop> U(events(&tt) = [] \<and> length(&tt) = \<lceil>n\<rceil>\<^sub>S\<^sub><
\<and> $st\<acute> = $st))"
lemma Skip_def: "Skip = \<^bold>R\<^sub>s(true \<turnstile> false \<diamondop> ($tr\<acute> =\<^sub>u $tr \<and> $st\<acute> =\<^sub>u $st))"
by (simp add: srdes_skip_def, rel_auto)
subsection \<open> Healthiness conditions \<close>
abbreviation RT1 :: "('\<sigma>,'\<theta>) cmlact \<Rightarrow> ('\<sigma>,'\<theta>) cmlact" where "RT1 \<equiv> R1"
abbreviation RT2 :: "('\<sigma>,'\<theta>) cmlact \<Rightarrow> ('\<sigma>,'\<theta>) cmlact" where "RT2 \<equiv> R2c"
abbreviation RT3 :: "('\<sigma>,'\<theta>) cmlact \<Rightarrow> ('\<sigma>,'\<theta>) cmlact" where "RT3 \<equiv> R3h"
abbreviation RT4 :: "('\<sigma>,'\<theta>) cmlact \<Rightarrow> ('\<sigma>,'\<theta>) cmlact" where "RT4 \<equiv> RD1"
abbreviation RT5 :: "('\<sigma>,'\<theta>) cmlact \<Rightarrow> ('\<sigma>,'\<theta>) cmlact" where "RT5 \<equiv> RD2"
abbreviation RT6 :: "('\<sigma>,'\<theta>) cmlact \<Rightarrow> ('\<sigma>,'\<theta>) cmlact" where "RT6(P) \<equiv> Skip ;; P"
abbreviation RT7 :: "('\<sigma>,'\<theta>) cmlact \<Rightarrow> ('\<sigma>,'\<theta>) cmlact" where "RT7 \<equiv> RD3"
abbreviation RT :: "('\<sigma>,'\<theta>) cmlact \<Rightarrow> ('\<sigma>,'\<theta>) cmlact"
where "RT \<equiv> RT1 \<circ> RT2 \<circ> RT3 \<circ> RT4 \<circ> RT7"
text \<open> For the time being we omit RT8. We also omit RT5 and RT6 as, as they are both tautologies
of the reduced theory, as we shall show. \<close>
text \<open> The following definition is taken from (Canham and Woodcock, 2014) \<close>
lemma Skip_CML_def: "Skip = (RT3 \<circ> RT4) (\<not> $wait\<acute> \<and> $tr\<acute> =\<^sub>u $tr \<and> $st\<acute> =\<^sub>u $st \<and> $ok\<acute>)"
by (rel_auto)
subsection \<open> Laws \<close>
lemma Wait_0: "Wait 0 = Skip"
proof -
have "Wait 0 = \<^bold>R\<^sub>s(true \<turnstile> U(events(&tt) = [] \<and> 0 > length(&tt)) \<diamondop> U(events(&tt) = [] \<and> length(&tt) = 0 \<and> $st\<acute> = $st))"
(is "?lhs = \<^bold>R\<^sub>s(?P \<turnstile> ?Q \<diamondop> ?R)")
by (simp add: Wait_def alpha)
also have "... = \<^bold>R\<^sub>s(true \<turnstile> false \<diamondop> ($tr\<acute> =\<^sub>u $tr \<and> $st\<acute> =\<^sub>u $st))"
proof -
have 1:"?Q = false"
by (pred_auto)
have 2:"R1(?R) = ($tr\<acute> =\<^sub>u $tr \<and> $st\<acute> =\<^sub>u $st)"
by (rel_auto)
show ?thesis
by (metis (no_types, lifting) "1" "2" RHS_design_post_R1)
qed
also have "... = Skip"
by (simp add: Skip_def)
finally show ?thesis .
qed
lemma skip_lift_state [alpha]: "\<lceil>II\<rceil>\<^sub>S = ($st\<acute> =\<^sub>u $st)"
by (rel_auto)
lemma Stop_left_zero:
assumes "P is CML"
shows "Stop ;; P = Stop"
proof -
have "Stop ;; P = \<^bold>R\<^sub>s(true \<turnstile> U(events(&tt) = []) \<diamondop> false) ;; \<^bold>R\<^sub>s(pre\<^sub>R(P) \<turnstile> peri\<^sub>R(P) \<diamondop> post\<^sub>R(P))"
by (simp add: SRD_reactive_tri_design Stop_def assms)
also have "... = \<^bold>R\<^sub>s (true \<turnstile> U(\<exists> $st\<acute> \<bullet> events(&tt) = []) \<diamondop> false)"
by (subst RHS_tri_design_composition, simp_all add: unrest R2s_true R1_false R2s_false)
also have "... = \<^bold>R\<^sub>s (true \<turnstile> U(events(&tt) = []) \<diamondop> false)"
by (simp add: ex_unrest unrest)
finally show ?thesis
by (simp add: Stop_def)
qed
(*
lemma Wait_m_plus_n: "(Wait m ;; Wait n) = (Wait (m + n))"
proof -
have 1: "(R2 (events\<^sub>u(&tt) =\<^sub>u \<langle>\<rangle> \<and> #\<^sub>u(&tt) =\<^sub>u \<lceil>m\<rceil>\<^sub>S\<^sub>< \<and> $st\<acute> =\<^sub>u $st) ;; R2 (events\<^sub>u(&tt) =\<^sub>u \<langle>\<rangle> \<and> \<lceil>n\<rceil>\<^sub>S\<^sub>< >\<^sub>u #\<^sub>u(&tt))) =
R2 (events\<^sub>u(&tt) =\<^sub>u \<langle>\<rangle> \<and> \<lceil>m\<rceil>\<^sub>S\<^sub>< \<le>\<^sub>u #\<^sub>u(&tt) \<and> #\<^sub>u(&tt) <\<^sub>u \<lceil>m + n\<rceil>\<^sub>S\<^sub><)" (is "?lhs = ?rhs")
proof -
have "?lhs = (\<^bold>\<exists> tt\<^sub>1 \<bullet> \<^bold>\<exists> tt\<^sub>2 \<bullet> (((events\<^sub>u(\<guillemotleft>tt\<^sub>1\<guillemotright>) =\<^sub>u \<langle>\<rangle> \<and> #\<^sub>u(\<guillemotleft>tt\<^sub>1\<guillemotright>) =\<^sub>u \<lceil>m\<rceil>\<^sub>S\<^sub>< \<and> $st\<acute> =\<^sub>u $st) ;;\<^sub>h
(events\<^sub>u(\<guillemotleft>tt\<^sub>2\<guillemotright>) =\<^sub>u \<langle>\<rangle> \<and> \<lceil>n\<rceil>\<^sub>S\<^sub>< >\<^sub>u #\<^sub>u(\<guillemotleft>tt\<^sub>2\<guillemotright>))) \<and> $tr\<acute> =\<^sub>u $tr + \<guillemotleft>tt\<^sub>1\<guillemotright> + \<guillemotleft>tt\<^sub>2\<guillemotright>))"
by (simp add: R2_seqr_form usubst unrest, rel_auto)
also have "... = (\<^bold>\<exists> tt\<^sub>1 \<bullet> \<^bold>\<exists> tt\<^sub>2 \<bullet> ((events\<^sub>u(\<guillemotleft>tt\<^sub>1\<guillemotright>) =\<^sub>u \<langle>\<rangle> \<and> (#\<^sub>u(\<guillemotleft>tt\<^sub>1\<guillemotright>) =\<^sub>u \<lceil>m\<rceil>\<^sub>S\<^sub>< \<and> $st\<acute> =\<^sub>u $st) ;;\<^sub>h
(\<lceil>n\<rceil>\<^sub>S\<^sub>< >\<^sub>u #\<^sub>u(\<guillemotleft>tt\<^sub>2\<guillemotright>) \<and> events\<^sub>u(\<guillemotleft>tt\<^sub>2\<guillemotright>) =\<^sub>u \<langle>\<rangle>))) \<and> $tr\<acute> =\<^sub>u $tr + \<guillemotleft>tt\<^sub>1\<guillemotright> + \<guillemotleft>tt\<^sub>2\<guillemotright>)"
by (simp add: seqr_pre_out unrest conj_assoc, simp add: conj_comm)
also have "... = (\<^bold>\<exists> tt\<^sub>1 \<bullet> \<^bold>\<exists> tt\<^sub>2 \<bullet> events\<^sub>u(\<guillemotleft>tt\<^sub>1\<guillemotright>) =\<^sub>u \<langle>\<rangle> \<and> ((#\<^sub>u(\<guillemotleft>tt\<^sub>1\<guillemotright>) =\<^sub>u \<lceil>m\<rceil>\<^sub>S\<^sub>< \<and> $st\<acute> =\<^sub>u $st) ;;\<^sub>h
(\<lceil>n\<rceil>\<^sub>S\<^sub>< >\<^sub>u #\<^sub>u(\<guillemotleft>tt\<^sub>2\<guillemotright>))) \<and> events\<^sub>u(\<guillemotleft>tt\<^sub>2\<guillemotright>) =\<^sub>u \<langle>\<rangle> \<and> $tr\<acute> =\<^sub>u $tr + \<guillemotleft>tt\<^sub>1\<guillemotright> + \<guillemotleft>tt\<^sub>2\<guillemotright>)"
by (simp add: seqr_post_out unrest conj_assoc)
also have "... = (\<^bold>\<exists> tt\<^sub>1 \<bullet> \<^bold>\<exists> tt\<^sub>2 \<bullet> ((#\<^sub>u(\<guillemotleft>tt\<^sub>1\<guillemotright>) =\<^sub>u \<lceil>m\<rceil>\<^sub>S\<^sub>< \<and> $st\<acute> =\<^sub>u $st) ;;\<^sub>h (\<lceil>n\<rceil>\<^sub>S\<^sub>< >\<^sub>u #\<^sub>u(\<guillemotleft>tt\<^sub>2\<guillemotright>))) \<and>
events\<^sub>u(\<guillemotleft>tt\<^sub>1\<guillemotright>) =\<^sub>u \<langle>\<rangle> \<and> events\<^sub>u(\<guillemotleft>tt\<^sub>2\<guillemotright>) =\<^sub>u \<langle>\<rangle> \<and> $tr\<acute> =\<^sub>u $tr + \<guillemotleft>tt\<^sub>1\<guillemotright> + \<guillemotleft>tt\<^sub>2\<guillemotright>)"
by (meson shEx_cong utp_pred_laws.inf.left_commute)
also have "... = (\<^bold>\<exists> tt\<^sub>1 \<bullet> \<^bold>\<exists> tt\<^sub>2 \<bullet> (\<lceil>(\<lceil>#\<^sub>u(\<guillemotleft>tt\<^sub>1\<guillemotright>) =\<^sub>u m\<rceil>\<^sub>< \<and> II) ;;\<^sub>h (\<lceil>n\<rceil>\<^sub>< >\<^sub>u #\<^sub>u(\<guillemotleft>tt\<^sub>2\<guillemotright>))\<rceil>\<^sub>S) \<and>
events\<^sub>u(\<guillemotleft>tt\<^sub>1\<guillemotright>) =\<^sub>u \<langle>\<rangle> \<and> events\<^sub>u(\<guillemotleft>tt\<^sub>2\<guillemotright>) =\<^sub>u \<langle>\<rangle> \<and> $tr\<acute> =\<^sub>u $tr + \<guillemotleft>tt\<^sub>1\<guillemotright> + \<guillemotleft>tt\<^sub>2\<guillemotright>)"
by (simp add: alpha)
also have "... = (\<^bold>\<exists> tt\<^sub>1 \<bullet> \<^bold>\<exists> tt\<^sub>2 \<bullet> (\<lceil>(II \<and> \<lceil>#\<^sub>u(\<guillemotleft>tt\<^sub>1\<guillemotright>) =\<^sub>u m\<rceil>\<^sub>>) ;;\<^sub>h (\<lceil>n\<rceil>\<^sub>< >\<^sub>u #\<^sub>u(\<guillemotleft>tt\<^sub>2\<guillemotright>))\<rceil>\<^sub>S) \<and>
events\<^sub>u(\<guillemotleft>tt\<^sub>1\<guillemotright>) =\<^sub>u \<langle>\<rangle> \<and> events\<^sub>u(\<guillemotleft>tt\<^sub>2\<guillemotright>) =\<^sub>u \<langle>\<rangle> \<and> $tr\<acute> =\<^sub>u $tr + \<guillemotleft>tt\<^sub>1\<guillemotright> + \<guillemotleft>tt\<^sub>2\<guillemotright>)"
by (simp add: pre_skip_post)
also have "... = (\<^bold>\<exists> tt\<^sub>1 \<bullet> \<^bold>\<exists> tt\<^sub>2 \<bullet> (\<lceil>\<lceil>#\<^sub>u(\<guillemotleft>tt\<^sub>1\<guillemotright>) =\<^sub>u m\<rceil>\<^sub>< \<and> \<lceil>n\<rceil>\<^sub>< >\<^sub>u #\<^sub>u(\<guillemotleft>tt\<^sub>2\<guillemotright>)\<rceil>\<^sub>S) \<and>
events\<^sub>u(\<guillemotleft>tt\<^sub>1\<guillemotright>) =\<^sub>u \<langle>\<rangle> \<and> events\<^sub>u(\<guillemotleft>tt\<^sub>2\<guillemotright>) =\<^sub>u \<langle>\<rangle> \<and> $tr\<acute> =\<^sub>u $tr + \<guillemotleft>tt\<^sub>1\<guillemotright> + \<guillemotleft>tt\<^sub>2\<guillemotright>)"
by (simp add: seqr_pre_transfer unrest)
also have "... = (\<^bold>\<exists> tt\<^sub>1 \<bullet> \<^bold>\<exists> tt\<^sub>2 \<bullet> (#\<^sub>u(\<guillemotleft>tt\<^sub>1\<guillemotright>) =\<^sub>u \<lceil>m\<rceil>\<^sub>S\<^sub>< \<and> \<lceil>n\<rceil>\<^sub>S\<^sub>< >\<^sub>u #\<^sub>u(\<guillemotleft>tt\<^sub>2\<guillemotright>)) \<and>
events\<^sub>u(\<guillemotleft>tt\<^sub>1\<guillemotright>) =\<^sub>u \<langle>\<rangle> \<and> events\<^sub>u(\<guillemotleft>tt\<^sub>2\<guillemotright>) =\<^sub>u \<langle>\<rangle> \<and> $tr\<acute> =\<^sub>u $tr + \<guillemotleft>tt\<^sub>1\<guillemotright> + \<guillemotleft>tt\<^sub>2\<guillemotright>)"
by (simp add: alpha)
also have "... = (\<^bold>\<exists> tt\<^sub>1 \<bullet> \<^bold>\<exists> tt\<^sub>2 \<bullet> \<^bold>\<exists> tt\<^sub>0 \<bullet> #\<^sub>u(\<guillemotleft>tt\<^sub>1\<guillemotright>) =\<^sub>u \<lceil>m\<rceil>\<^sub>S\<^sub>< \<and> \<lceil>n\<rceil>\<^sub>S\<^sub>< >\<^sub>u #\<^sub>u(drop\<^sub>u(#\<^sub>u(\<guillemotleft>tt\<^sub>1\<guillemotright>), \<guillemotleft>tt\<^sub>0\<guillemotright>)) \<and>
events\<^sub>u(\<guillemotleft>tt\<^sub>0\<guillemotright>) =\<^sub>u \<langle>\<rangle> \<and> $tr\<acute> =\<^sub>u $tr + \<guillemotleft>tt\<^sub>0\<guillemotright> \<and> \<guillemotleft>tt\<^sub>0\<guillemotright> =\<^sub>u \<guillemotleft>tt\<^sub>1\<guillemotright> + \<guillemotleft>tt\<^sub>2\<guillemotright> \<and>
\<guillemotleft>tt\<^sub>1\<guillemotright> =\<^sub>u take\<^sub>u(#\<^sub>u(\<guillemotleft>tt\<^sub>1\<guillemotright>), \<guillemotleft>tt\<^sub>0\<guillemotright>) \<and> \<guillemotleft>tt\<^sub>2\<guillemotright> =\<^sub>u drop\<^sub>u(#\<^sub>u(\<guillemotleft>tt\<^sub>1\<guillemotright>), \<guillemotleft>tt\<^sub>0\<guillemotright>))"
by ((rule shEx_cong)+, rel_auto)
also have "... = (\<^bold>\<exists> tt\<^sub>1 \<bullet> \<^bold>\<exists> tt\<^sub>2 \<bullet> \<^bold>\<exists> tt\<^sub>0 \<bullet> \<lceil>n\<rceil>\<^sub>S\<^sub>< >\<^sub>u #\<^sub>u(drop\<^sub>u(\<lceil>m\<rceil>\<^sub>S\<^sub><, \<guillemotleft>tt\<^sub>0\<guillemotright>)) \<and>
events\<^sub>u(\<guillemotleft>tt\<^sub>0\<guillemotright>) =\<^sub>u \<langle>\<rangle> \<and> $tr\<acute> =\<^sub>u $tr + \<guillemotleft>tt\<^sub>0\<guillemotright> \<and>
\<guillemotleft>tt\<^sub>1\<guillemotright> =\<^sub>u take\<^sub>u(\<lceil>m\<rceil>\<^sub>S\<^sub><, \<guillemotleft>tt\<^sub>0\<guillemotright>) \<and> \<guillemotleft>tt\<^sub>2\<guillemotright> =\<^sub>u drop\<^sub>u(\<lceil>m\<rceil>\<^sub>S\<^sub><, \<guillemotleft>tt\<^sub>0\<guillemotright>) \<and> #\<^sub>u(\<guillemotleft>tt\<^sub>0\<guillemotright>) \<ge>\<^sub>u \<lceil>m\<rceil>\<^sub>S\<^sub><)"
by ((rule shEx_cong)+, rel_auto, simp_all add: min_absorb2)
also have "... = (\<^bold>\<exists> tt\<^sub>0 \<bullet> \<lceil>m + n\<rceil>\<^sub>S\<^sub>< >\<^sub>u #\<^sub>u(\<guillemotleft>tt\<^sub>0\<guillemotright>) \<and> events\<^sub>u(\<guillemotleft>tt\<^sub>0\<guillemotright>) =\<^sub>u \<langle>\<rangle> \<and> $tr\<acute> =\<^sub>u $tr + \<guillemotleft>tt\<^sub>0\<guillemotright> \<and> #\<^sub>u(\<guillemotleft>tt\<^sub>0\<guillemotright>) \<ge>\<^sub>u \<lceil>m\<rceil>\<^sub>S\<^sub><)"
by (rel_auto)
also have "... = R2 (events\<^sub>u(&tt) =\<^sub>u \<langle>\<rangle> \<and> \<lceil>m\<rceil>\<^sub>S\<^sub>< \<le>\<^sub>u #\<^sub>u(&tt) \<and> #\<^sub>u(&tt) <\<^sub>u \<lceil>m + n\<rceil>\<^sub>S\<^sub><)"
by (simp add: R2_form usubst unrest, rel_auto)
finally show ?thesis .
qed
have 2:"(R2 (events\<^sub>u(&tt) =\<^sub>u \<langle>\<rangle> \<and> #\<^sub>u(&tt) =\<^sub>u \<lceil>m\<rceil>\<^sub>S\<^sub>< \<and> $st\<acute> =\<^sub>u $st) ;; R2 (events\<^sub>u(&tt) =\<^sub>u \<langle>\<rangle> \<and> #\<^sub>u(&tt) =\<^sub>u \<lceil>n\<rceil>\<^sub>S\<^sub>< \<and> $st\<acute> =\<^sub>u $st)) =
R2 (events\<^sub>u(&tt) =\<^sub>u \<langle>\<rangle> \<and> #\<^sub>u(&tt) =\<^sub>u \<lceil>m + n\<rceil>\<^sub>S\<^sub>< \<and> $st\<acute> =\<^sub>u $st)" (is "?lhs = ?rhs")
proof -
have "?lhs = (\<^bold>\<exists> tt\<^sub>1 \<bullet> \<^bold>\<exists> tt\<^sub>2 \<bullet> ((events\<^sub>u(\<guillemotleft>tt\<^sub>1\<guillemotright>) =\<^sub>u \<langle>\<rangle> \<and> #\<^sub>u(\<guillemotleft>tt\<^sub>1\<guillemotright>) =\<^sub>u \<lceil>m\<rceil>\<^sub>S\<^sub>< \<and> $st\<acute> =\<^sub>u $st) ;;\<^sub>h
(events\<^sub>u(\<guillemotleft>tt\<^sub>2\<guillemotright>) =\<^sub>u \<langle>\<rangle> \<and> #\<^sub>u(\<guillemotleft>tt\<^sub>2\<guillemotright>) =\<^sub>u \<lceil>n\<rceil>\<^sub>S\<^sub>< \<and> $st\<acute> =\<^sub>u $st))
\<and> $tr\<acute> =\<^sub>u $tr + \<guillemotleft>tt\<^sub>1\<guillemotright> + \<guillemotleft>tt\<^sub>2\<guillemotright>)"
by (simp add: R2_seqr_form usubst unrest, rel_auto)
also have "... = (\<^bold>\<exists> tt\<^sub>1 \<bullet> \<^bold>\<exists> tt\<^sub>2 \<bullet> ((#\<^sub>u(\<guillemotleft>tt\<^sub>1\<guillemotright>) =\<^sub>u \<lceil>m\<rceil>\<^sub>S\<^sub>< \<and> $st\<acute> =\<^sub>u $st) ;;\<^sub>h (#\<^sub>u(\<guillemotleft>tt\<^sub>2\<guillemotright>) =\<^sub>u \<lceil>n\<rceil>\<^sub>S\<^sub>< \<and> $st\<acute> =\<^sub>u $st)) \<and>
events\<^sub>u(\<guillemotleft>tt\<^sub>1\<guillemotright> + \<guillemotleft>tt\<^sub>2\<guillemotright>) =\<^sub>u \<langle>\<rangle> \<and> $tr\<acute> =\<^sub>u $tr + \<guillemotleft>tt\<^sub>1\<guillemotright> + \<guillemotleft>tt\<^sub>2\<guillemotright>)"
by (rel_auto)
also have "... = (\<^bold>\<exists> tt\<^sub>1 \<bullet> \<^bold>\<exists> tt\<^sub>2 \<bullet> (\<lceil>(\<lceil>#\<^sub>u(\<guillemotleft>tt\<^sub>1\<guillemotright>) =\<^sub>u m\<rceil>\<^sub>< \<and> II) ;;\<^sub>h (#\<^sub>u(\<guillemotleft>tt\<^sub>2\<guillemotright>) =\<^sub>u \<lceil>n\<rceil>\<^sub>< \<and> II)\<rceil>\<^sub>S) \<and>
events\<^sub>u(\<guillemotleft>tt\<^sub>1\<guillemotright> + \<guillemotleft>tt\<^sub>2\<guillemotright>) =\<^sub>u \<langle>\<rangle> \<and> $tr\<acute> =\<^sub>u $tr + \<guillemotleft>tt\<^sub>1\<guillemotright> + \<guillemotleft>tt\<^sub>2\<guillemotright>)"
by (simp add: alpha)
also have "... = (\<^bold>\<exists> tt\<^sub>1 \<bullet> \<^bold>\<exists> tt\<^sub>2 \<bullet> (\<lceil>\<lceil>#\<^sub>u(\<guillemotleft>tt\<^sub>1\<guillemotright>) =\<^sub>u m\<rceil>\<^sub>< \<and> #\<^sub>u(\<guillemotleft>tt\<^sub>2\<guillemotright>) =\<^sub>u \<lceil>n\<rceil>\<^sub>< \<and> II\<rceil>\<^sub>S) \<and>
events\<^sub>u(\<guillemotleft>tt\<^sub>1\<guillemotright> + \<guillemotleft>tt\<^sub>2\<guillemotright>) =\<^sub>u \<langle>\<rangle> \<and> $tr\<acute> =\<^sub>u $tr + \<guillemotleft>tt\<^sub>1\<guillemotright> + \<guillemotleft>tt\<^sub>2\<guillemotright>)"
by (simp add: pre_skip_post, simp add: seqr_pre_transfer unrest)
also have "... = (\<^bold>\<exists> tt\<^sub>1 \<bullet> \<^bold>\<exists> tt\<^sub>2 \<bullet> (#\<^sub>u(\<guillemotleft>tt\<^sub>1\<guillemotright>) =\<^sub>u \<lceil>m\<rceil>\<^sub>S\<^sub>< \<and> #\<^sub>u(\<guillemotleft>tt\<^sub>2\<guillemotright>) =\<^sub>u \<lceil>n\<rceil>\<^sub>S\<^sub>< \<and> $st\<acute> =\<^sub>u $st) \<and>
events\<^sub>u(\<guillemotleft>tt\<^sub>1\<guillemotright> + \<guillemotleft>tt\<^sub>2\<guillemotright>) =\<^sub>u \<langle>\<rangle> \<and> $tr\<acute> =\<^sub>u $tr + \<guillemotleft>tt\<^sub>1\<guillemotright> + \<guillemotleft>tt\<^sub>2\<guillemotright>)"
by (simp add: alpha)
also have "... = (\<^bold>\<exists> tt\<^sub>1 \<bullet> \<^bold>\<exists> tt\<^sub>2 \<bullet> \<^bold>\<exists> tt\<^sub>0 \<bullet> (#\<^sub>u(\<guillemotleft>tt\<^sub>1\<guillemotright>) =\<^sub>u \<lceil>m\<rceil>\<^sub>S\<^sub>< \<and> #\<^sub>u(\<guillemotleft>tt\<^sub>2\<guillemotright>) =\<^sub>u \<lceil>n\<rceil>\<^sub>S\<^sub>< \<and> $st\<acute> =\<^sub>u $st) \<and>
events\<^sub>u(\<guillemotleft>tt\<^sub>0\<guillemotright>) =\<^sub>u \<langle>\<rangle> \<and> $tr\<acute> =\<^sub>u $tr + \<guillemotleft>tt\<^sub>0\<guillemotright> \<and> \<guillemotleft>tt\<^sub>0\<guillemotright> =\<^sub>u \<guillemotleft>tt\<^sub>1\<guillemotright> + \<guillemotleft>tt\<^sub>2\<guillemotright>)"
by (rel_auto)
also have "... = (\<^bold>\<exists> tt\<^sub>1 \<bullet> \<^bold>\<exists> tt\<^sub>2 \<bullet> \<^bold>\<exists> tt\<^sub>0 \<bullet> (#\<^sub>u(\<guillemotleft>tt\<^sub>1\<guillemotright>) =\<^sub>u \<lceil>m\<rceil>\<^sub>S\<^sub>< \<and> #\<^sub>u(\<guillemotleft>tt\<^sub>2\<guillemotright>) =\<^sub>u \<lceil>n\<rceil>\<^sub>S\<^sub>< \<and> $st\<acute> =\<^sub>u $st) \<and>
events\<^sub>u(\<guillemotleft>tt\<^sub>0\<guillemotright>) =\<^sub>u \<langle>\<rangle> \<and> $tr\<acute> =\<^sub>u $tr + \<guillemotleft>tt\<^sub>0\<guillemotright> \<and> #\<^sub>u(\<guillemotleft>tt\<^sub>0\<guillemotright>) \<ge>\<^sub>u \<lceil>m\<rceil>\<^sub>S\<^sub>< \<and>
\<guillemotleft>tt\<^sub>1\<guillemotright> =\<^sub>u take\<^sub>u(\<lceil>m\<rceil>\<^sub>S\<^sub><, \<guillemotleft>tt\<^sub>0\<guillemotright>) \<and> \<guillemotleft>tt\<^sub>2\<guillemotright> =\<^sub>u drop\<^sub>u(\<lceil>m\<rceil>\<^sub>S\<^sub><, \<guillemotleft>tt\<^sub>0\<guillemotright>))"
by ((rule shEx_cong)+, rel_auto)
also have "... = (\<^bold>\<exists> tt\<^sub>0 \<bullet> (#\<^sub>u(drop\<^sub>u(\<lceil>m\<rceil>\<^sub>S\<^sub><, \<guillemotleft>tt\<^sub>0\<guillemotright>)) =\<^sub>u \<lceil>n\<rceil>\<^sub>S\<^sub>< \<and> $st\<acute> =\<^sub>u $st) \<and>
events\<^sub>u(\<guillemotleft>tt\<^sub>0\<guillemotright>) =\<^sub>u \<langle>\<rangle> \<and> $tr\<acute> =\<^sub>u $tr + \<guillemotleft>tt\<^sub>0\<guillemotright> \<and> #\<^sub>u(\<guillemotleft>tt\<^sub>0\<guillemotright>) \<ge>\<^sub>u \<lceil>m\<rceil>\<^sub>S\<^sub><)"
by (rel_auto)
also have "... = (\<^bold>\<exists> tt\<^sub>0 \<bullet> (#\<^sub>u(\<guillemotleft>tt\<^sub>0\<guillemotright>) - \<lceil>m\<rceil>\<^sub>S\<^sub>< =\<^sub>u \<lceil>n\<rceil>\<^sub>S\<^sub>< \<and> $st\<acute> =\<^sub>u $st) \<and>
events\<^sub>u(\<guillemotleft>tt\<^sub>0\<guillemotright>) =\<^sub>u \<langle>\<rangle> \<and> $tr\<acute> =\<^sub>u $tr + \<guillemotleft>tt\<^sub>0\<guillemotright> \<and> #\<^sub>u(\<guillemotleft>tt\<^sub>0\<guillemotright>) \<ge>\<^sub>u \<lceil>m\<rceil>\<^sub>S\<^sub><)"
by (rel_auto)
also have "... = (\<^bold>\<exists> tt\<^sub>0 \<bullet> (#\<^sub>u(\<guillemotleft>tt\<^sub>0\<guillemotright>) =\<^sub>u \<lceil>m\<rceil>\<^sub>S\<^sub>< + \<lceil>n\<rceil>\<^sub>S\<^sub>< \<and> $st\<acute> =\<^sub>u $st) \<and>
events\<^sub>u(\<guillemotleft>tt\<^sub>0\<guillemotright>) =\<^sub>u \<langle>\<rangle> \<and> $tr\<acute> =\<^sub>u $tr + \<guillemotleft>tt\<^sub>0\<guillemotright> \<and> #\<^sub>u(\<guillemotleft>tt\<^sub>0\<guillemotright>) \<ge>\<^sub>u \<lceil>m\<rceil>\<^sub>S\<^sub><)"
by (rel_auto)
also have "... = ?rhs"
by (simp add: R2_form usubst unrest, rel_auto)
finally show ?thesis .
qed
show ?thesis
proof -
have "(Wait m ;; Wait n) =
\<^bold>R\<^sub>s (true \<turnstile> ((\<exists> $st\<acute> \<bullet> events\<^sub>u(&tt) =\<^sub>u \<langle>\<rangle> \<and> \<lceil>m\<rceil>\<^sub>S\<^sub>< >\<^sub>u #\<^sub>u(&tt)) \<or> R2 (events\<^sub>u(&tt) =\<^sub>u \<langle>\<rangle> \<and> #\<^sub>u(&tt) \<ge>\<^sub>u \<lceil>m\<rceil>\<^sub>S\<^sub>< \<and> \<lceil>m + n\<rceil>\<^sub>S\<^sub>< >\<^sub>u #\<^sub>u(&tt)))
\<diamondop> R2 (events\<^sub>u(&tt) =\<^sub>u \<langle>\<rangle> \<and> #\<^sub>u(&tt) =\<^sub>u \<lceil>m + n\<rceil>\<^sub>S\<^sub>< \<and> $st\<acute> =\<^sub>u $st))"
by (simp add: Wait_def RHS_tri_design_composition unrest R2s_true R1_false R2_def[THEN sym] 1[simplified] 2[simplified])
also have "... =
\<^bold>R\<^sub>s (true \<turnstile> R2(((\<exists> $st\<acute> \<bullet> events\<^sub>u(&tt) =\<^sub>u \<langle>\<rangle> \<and> \<lceil>m\<rceil>\<^sub>S\<^sub>< >\<^sub>u #\<^sub>u(&tt)) \<or> R2 (events\<^sub>u(&tt) =\<^sub>u \<langle>\<rangle> \<and> #\<^sub>u(&tt) \<ge>\<^sub>u \<lceil>m\<rceil>\<^sub>S\<^sub>< \<and> \<lceil>m + n\<rceil>\<^sub>S\<^sub>< >\<^sub>u #\<^sub>u(&tt)))
\<diamondop> R2(events\<^sub>u(&tt) =\<^sub>u \<langle>\<rangle> \<and> #\<^sub>u(&tt) =\<^sub>u \<lceil>m + n\<rceil>\<^sub>S\<^sub>< \<and> $st\<acute> =\<^sub>u $st)))"
using RHS_design_export_R2 by blast
also have "... =
\<^bold>R\<^sub>s (true \<turnstile> R2((events\<^sub>u(&tt) =\<^sub>u \<langle>\<rangle> \<and> \<lceil>m\<rceil>\<^sub>S\<^sub>< >\<^sub>u #\<^sub>u(&tt) \<or> R2 (events\<^sub>u(&tt) =\<^sub>u \<langle>\<rangle> \<and> #\<^sub>u(&tt) \<ge>\<^sub>u \<lceil>m\<rceil>\<^sub>S\<^sub>< \<and> \<lceil>m + n\<rceil>\<^sub>S\<^sub>< >\<^sub>u #\<^sub>u(&tt)))
\<diamondop> R2(events\<^sub>u(&tt) =\<^sub>u \<langle>\<rangle> \<and> #\<^sub>u(&tt) =\<^sub>u \<lceil>m + n\<rceil>\<^sub>S\<^sub>< \<and> $st\<acute> =\<^sub>u $st)))"
by (simp add: ex_unrest unrest)
also have "... =
\<^bold>R\<^sub>s (true \<turnstile> R2((events\<^sub>u(&tt) =\<^sub>u \<langle>\<rangle> \<and> \<lceil>m\<rceil>\<^sub>S\<^sub>< >\<^sub>u #\<^sub>u(&tt) \<or> (events\<^sub>u(&tt) =\<^sub>u \<langle>\<rangle> \<and> #\<^sub>u(&tt) \<ge>\<^sub>u \<lceil>m\<rceil>\<^sub>S\<^sub>< \<and> \<lceil>m + n\<rceil>\<^sub>S\<^sub>< >\<^sub>u #\<^sub>u(&tt)))
\<diamondop> (events\<^sub>u(&tt) =\<^sub>u \<langle>\<rangle> \<and> #\<^sub>u(&tt) =\<^sub>u \<lceil>m + n\<rceil>\<^sub>S\<^sub>< \<and> $st\<acute> =\<^sub>u $st)))"
by (simp add: R2_wait'_cond R2_idem R2_disj)
also have "... =
\<^bold>R\<^sub>s (true \<turnstile> (events\<^sub>u(&tt) =\<^sub>u \<langle>\<rangle> \<and> \<lceil>m\<rceil>\<^sub>S\<^sub>< >\<^sub>u #\<^sub>u(&tt) \<or> (events\<^sub>u(&tt) =\<^sub>u \<langle>\<rangle> \<and> #\<^sub>u(&tt) \<ge>\<^sub>u \<lceil>m\<rceil>\<^sub>S\<^sub>< \<and> \<lceil>m + n\<rceil>\<^sub>S\<^sub>< >\<^sub>u #\<^sub>u(&tt)))
\<diamondop> (events\<^sub>u(&tt) =\<^sub>u \<langle>\<rangle> \<and> #\<^sub>u(&tt) =\<^sub>u \<lceil>m + n\<rceil>\<^sub>S\<^sub>< \<and> $st\<acute> =\<^sub>u $st))" (is "?lhs = \<^bold>R\<^sub>s(?P \<turnstile> ?Q \<diamondop> ?R)")
by (metis (mono_tags, hide_lams) R2_def RHS_design_export_R1 RHS_design_export_R2s)
also have "... = \<^bold>R\<^sub>s (true \<turnstile> (events\<^sub>u(&tt) =\<^sub>u \<langle>\<rangle> \<and> \<lceil>m + n\<rceil>\<^sub>S\<^sub>< >\<^sub>u #\<^sub>u(&tt)) \<diamondop> (events\<^sub>u(&tt) =\<^sub>u \<langle>\<rangle> \<and> #\<^sub>u(&tt) =\<^sub>u \<lceil>m + n\<rceil>\<^sub>S\<^sub>< \<and> $st\<acute> =\<^sub>u $st))"
proof -
have 1:"?Q = (events\<^sub>u(&tt) =\<^sub>u \<langle>\<rangle> \<and> \<lceil>m + n\<rceil>\<^sub>S\<^sub>< >\<^sub>u #\<^sub>u(&tt))"
by (pred_auto)
show ?thesis
by (simp add: 1)
qed
also have "... = Wait (m + n)"
by (simp add: Wait_def)
finally show ?thesis .
qed
qed
*)
end