forked from FastLED/FastLED
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclockless_trinket.h
279 lines (250 loc) · 11.6 KB
/
clockless_trinket.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
#ifndef __INC_CLOCKLESS_TRINKET_H
#define __INC_CLOCKLESS_TRINKET_H
#include "controller.h"
#include "lib8tion.h"
#include "delay.h"
#include <avr/interrupt.h> // for cli/se definitions
// Scaling macro choice
#ifndef TRINKET_SCALE
#define TRINKET_SCALE 1
#endif
// Variations on the functions in delay.h - w/a loop var passed in to preserve registers across calls by the optimizer/compiler
template<int CYCLES> inline void _dc(register uint8_t & loopvar);
template<int _LOOP, int PAD> inline void _dc_AVR(register uint8_t & loopvar) {
_dc<PAD>(loopvar);
asm __volatile__ ( "LDI %[loopvar], %[_LOOP]\n\tL_%=: DEC %[loopvar]\n\t BRNE L_%=\n\t" :
[loopvar] "+a" (loopvar) : [_LOOP] "M" (_LOOP) : );
}
template<int CYCLES> __attribute__((always_inline)) inline void _dc(register uint8_t & loopvar) {
_dc_AVR<CYCLES/3,CYCLES%3>(loopvar);
}
template<> __attribute__((always_inline)) inline void _dc<0>(register uint8_t & loopvar) {}
template<> __attribute__((always_inline)) inline void _dc<1>(register uint8_t & loopvar) {asm __volatile__("cp r0,r0":::);}
template<> __attribute__((always_inline)) inline void _dc<2>(register uint8_t & loopvar) {asm __volatile__("rjmp .+0":::);}
#define D1(ADJ) _dc<T1-(2+ADJ)>(loopvar);
#define D2(ADJ) _dc<T2-(1+ADJ)>(loopvar);
#define D3(ADJ) _dc<T3-(1+ADJ)>(loopvar);
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//
// Base template for clockless controllers. These controllers have 3 control points in their cycle for each bit. The first point
// is where the line is raised hi. The second point is where the line is dropped low for a zero. The third point is where the
// line is dropped low for a one. T1, T2, and T3 correspond to the timings for those three in clock cycles.
//
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <uint8_t DATA_PIN, int T1, int T2, int T3, EOrder RGB_ORDER = RGB, int WAIT_TIME = 50>
class ClocklessController_Trinket : public CLEDController {
typedef typename FastPin<DATA_PIN>::port_ptr_t data_ptr_t;
typedef typename FastPin<DATA_PIN>::port_t data_t;
CMinWait<WAIT_TIME> mWait;
public:
virtual void init() {
FastPin<DATA_PIN>::setOutput();
}
virtual void clearLeds(int nLeds) {
static byte zeros[3] = {0,0,0};
showRGBInternal_AdjTime(0, false, nLeds, 0, zeros);
}
// set all the leds on the controller to a given color
virtual void showColor(const struct CRGB & data, int nLeds, uint8_t scale = 255) {
showRGBInternal_AdjTime(0, false, nLeds, scale, (const byte*)&data);
}
virtual void show(const struct CRGB *rgbdata, int nLeds, uint8_t scale = 255) {
showRGBInternal_AdjTime(0, true, nLeds, scale, (const byte*)rgbdata);
}
#ifdef SUPPORT_ARGB
virtual void show(const struct CARGB *rgbdata, int nLeds, uint8_t scale = 255) {
showRGBInternal_AdjTime(1, true, nLeds, scale, (const byte*)rgbdata);
}
#endif
void __attribute__ ((noinline)) showRGBInternal_AdjTime(int skip, bool advance, int nLeds, uint8_t scale, const byte *rgbdata) {
mWait.wait();
cli();
showRGBInternal(skip, advance, nLeds, scale, rgbdata);
// Adjust the timer
long microsTaken = CLKS_TO_MICROS((long)nLeds * 24 * (T1 + T2 + T3));
MS_COUNTER += (microsTaken / 1000);
sei();
mWait.mark();
}
#define USE_ASM_MACROS
#define ASM_VARS : /* write variables */ \
[b0] "+r" (b0), \
[b1] "+r" (b1), \
[b2] "+r" (b2), \
[count] "+x" (count), \
[scale_base] "+r" (scale_base), \
[data] "+z" (data), \
[loopvar] "+a" (loopvar) \
: /* use variables */ \
[hi] "r" (hi), \
[lo] "r" (lo), \
[scale] "r" (scale), \
[ADV] "r" (advanceBy), \
[zero] "r" (zero), \
[O0] "M" (RGB_BYTE0(RGB_ORDER)), \
[O1] "M" (RGB_BYTE1(RGB_ORDER)), \
[O2] "M" (RGB_BYTE2(RGB_ORDER)), \
[PORT] "M" (FastPin<DATA_PIN>::port()-0x20) \
: /* clobber registers */
// 1 cycle, write hi to the port
#define HI1 asm __volatile__("out %[PORT], %[hi]" ASM_VARS );
// 1 cycle, write lo to the port
#define LO1 asm __volatile__("out %[PORT], %[lo]" ASM_VARS );
// 2 cycles, sbrs on flipping the lne to lo if we're pushing out a 0
#define QLO2(B, N) asm __volatile__("sbrs %[" #B "], " #N ASM_VARS ); LO1;
// load a byte from ram into the given var with the given offset
#define LD2(B,O) asm __volatile__("ldd %[" #B "], Z + %[" #O "]" ASM_VARS );
// 3 cycles - load a byte from ram into the scaling scratch space with the given offset, clear the target var
#define LDSCL3(B,O) asm __volatile__("ldd %[scale_base], Z + %[" #O "]\n\tclr %[" #B "]" ASM_VARS );
// 2 cycles - increment the data pointer
#define IDATA2 asm __volatile__("add %A[data], %A[ADV]\n\tadc %B[data], %B[ADV]" ASM_VARS );
// 2 cycles - decrement the counter
#define DCOUNT2 asm __volatile__("sbiw %[count], 1" ASM_VARS );
// 2 cycles - jump to the beginning of the loop
#define JMPLOOP2 asm __volatile__("rjmp 1b" ASM_VARS );
// 2 cycles - jump out of the loop
#define BRLOOP1 asm __volatile__("breq 2f" ASM_VARS );
// 2 cycles - perform one step of the scaling (if a given bit is set in scale, add scale-base to the scratch space)
#define SCALE2(B, N) asm __volatile__("sbrc %[scale], " #N "\n\tadd %[" #B "], %[scale_base]" ASM_VARS );
// 1 cycle - rotate right, pulling in from carry
#define ROR1(B) asm __volatile__("ror %[" #B "]" ASM_VARS );
// 1 cycle, clear the carry bit
#define CLC1 asm __volatile__("clc" ASM_VARS );
// 1 cycle, move one register to another
#define MOV1(B1, B2) asm __volatile__("mov %[" #B1 "], %[" #B2 "]" ASM_VARS );
// 4 cycles, rotate, clear carry, scale next bit
#define RORSC4(B, N) ROR1(B) CLC1 SCALE2(B, N)
// 4 cycles, scale bit, rotate, clear carry
#define SCROR4(B, N) SCALE2(B,N) ROR1(B) CLC1
// define the beginning of the loop
#define LOOP asm __volatile__("1:" ASM_VARS );
#define DONE asm __volatile__("2:" ASM_VARS );
// delay time
// This method is made static to force making register Y available to use for data on AVR - if the method is non-static, then
// gcc will use register Y for the this pointer.
static void __attribute__ ((noinline)) showRGBInternal(int skip, bool advance, int nLeds, uint8_t scale, const byte *rgbdata) {
byte *data = (byte*)rgbdata;
data_t mask = FastPin<DATA_PIN>::mask();
data_ptr_t port = FastPin<DATA_PIN>::port();
// register uint8_t *end = data + nLeds;
data_t hi = *port | mask;
data_t lo = *port & ~mask;
*port = lo;
uint8_t b0, b1, b2;
uint16_t count = nLeds;
uint8_t scale_base = 0;
uint16_t advanceBy = advance ? (skip+3) : 0;
const uint8_t zero = 0;
b0 = data[RGB_BYTE0(RGB_ORDER)];
b0 = scale8(b0, scale);
b1 = data[RGB_BYTE1(RGB_ORDER)];
b2 = 0;
register uint8_t loopvar;
if(RGB_ORDER == RGB) {
// If the rgb order is RGB, we can cut back on program space usage by making a much more compact
// representation.
// multiply count by 3, don't use * because there's no hardware multiply
count = count+(count<<1);
advanceBy = advance ? 1 : 0;
{
/* asm */
LOOP
// Sum of the clock counts across each row should be 10 for 8Mhz, WS2811
#if TRINKET_SCALE
// Inline scaling, RGB ordering matches byte ordering
HI1 D1(0) QLO2(b0, 7) LDSCL3(b1,O1) D2(3) LO1 SCALE2(b1,0) D3(2)
HI1 D1(0) QLO2(b0, 6) RORSC4(b1,1) D2(4) LO1 ROR1(b1) CLC1 D3(2)
HI1 D1(0) QLO2(b0, 5) SCROR4(b1,2) D2(4) LO1 SCALE2(b1,3) D3(2)
HI1 D1(0) QLO2(b0, 4) RORSC4(b1,4) D2(4) LO1 ROR1(b1) CLC1 D3(2)
HI1 D1(0) QLO2(b0, 3) SCROR4(b1,5) D2(4) LO1 SCALE2(b1,6) D3(2)
HI1 D1(0) QLO2(b0, 2) RORSC4(b1,7) D2(4) LO1 ROR1(b1) CLC1 D3(2)
HI1 D1(0) QLO2(b0, 1) IDATA2 D2(2) LO1 D3(0)
// In the last bit's first block, we decrement and branch to done if we decremented to 0
HI1 D1(0) QLO2(b0, 0) DCOUNT2 BRLOOP1 MOV1(b0, b1) D2(4) LO1 D3(2) JMPLOOP2
#else
// no inline scaling, RGB ordering matches byte ordering
HI1 D1(0) QLO2(b0, 7) LD2(b1,O1) D2(2) LO1 D3(0)
HI1 D1(0) QLO2(b0, 6) D2(0) LO1 D3(0)
HI1 D1(0) QLO2(b0, 5) D2(0) LO1 D3(0)
HI1 D1(0) QLO2(b0, 4) D2(0) LO1 D3(0)
HI1 D1(0) QLO2(b0, 3) D2(0) LO1 D3(0)
HI1 D1(0) QLO2(b0, 2) D2(0) LO1 D3(0)
HI1 D1(0) QLO2(b0, 1) IDATA2 D2(2) LO1 D3(0)
// In the last bit's first block, we decrement and branch to done if we decremented to 0
HI1 D1(0) QLO2(b2, 0) DCOUNT2 BRLOOP1 MOV1(b0,b1) D2(4) LO1 D3(2) JMPLOOP2
#endif
DONE
D2(4) LO1 D3(0)
}
}
else
{
{
/* asm */
LOOP
// Sum of the clock counts across each row should be 10 for 8Mhz, WS2811
#if TRINKET_SCALE
// Inline scaling - RGB ordering
HI1 D1(0) QLO2(b0, 7) LDSCL3(b1,O1) D2(3) LO1 SCALE2(b1,0) D3(2)
HI1 D1(0) QLO2(b0, 6) RORSC4(b1,1) D2(4) LO1 ROR1(b1) CLC1 D3(2)
HI1 D1(0) QLO2(b0, 5) SCROR4(b1,2) D2(4) LO1 SCALE2(b1,3) D3(2)
HI1 D1(0) QLO2(b0, 4) RORSC4(b1,4) D2(4) LO1 ROR1(b1) CLC1 D3(2)
HI1 D1(0) QLO2(b0, 3) SCROR4(b1,5) D2(4) LO1 SCALE2(b1,6) D3(2)
HI1 D1(0) QLO2(b0, 2) RORSC4(b1,7) D2(4) LO1 ROR1(b1) CLC1 D3(2)
HI1 D1(0) QLO2(b0, 1) D2(0) LO1 D3(0)
HI1 D1(0) QLO2(b0, 0) D2(0) LO1 D3(0)
HI1 D1(0) QLO2(b1, 7) LDSCL3(b2,O2) D2(3) LO1 SCALE2(b2,0) D3(2)
HI1 D1(0) QLO2(b1, 6) RORSC4(b2,1) D2(4) LO1 ROR1(b2) CLC1 D3(2)
HI1 D1(0) QLO2(b1, 5) SCROR4(b2,2) D2(4) LO1 SCALE2(b2,3) D3(2)
HI1 D1(0) QLO2(b1, 4) RORSC4(b2,4) D2(4) LO1 ROR1(b2) CLC1 D3(2)
HI1 D1(0) QLO2(b1, 3) SCROR4(b2,5) D2(4) LO1 SCALE2(b2,6) D3(2)
HI1 D1(0) QLO2(b1, 2) RORSC4(b2,7) D2(4) LO1 ROR1(b2) CLC1 D3(2)
HI1 D1(0) QLO2(b1, 1) D2(0) LO1 D3(0)
HI1 D1(0) QLO2(b1, 0) IDATA2 D2(2) LO1 D3(0)
HI1 D1(0) QLO2(b2, 7) LDSCL3(b0,O0) D2(3) LO1 SCALE2(b0,0) D3(2)
HI1 D1(0) QLO2(b2, 6) RORSC4(b0,1) D2(4) LO1 ROR1(b0) CLC1 D3(2)
HI1 D1(0) QLO2(b2, 5) SCROR4(b0,2) D2(4) LO1 SCALE2(b0,3) D3(2)
HI1 D1(0) QLO2(b2, 4) RORSC4(b0,4) D2(4) LO1 ROR1(b0) CLC1 D3(2)
HI1 D1(0) QLO2(b2, 3) SCROR4(b0,5) D2(4) LO1 SCALE2(b0,6) D3(2)
HI1 D1(0) QLO2(b2, 2) RORSC4(b0,7) D2(4) LO1 ROR1(b0) CLC1 D3(2)
HI1 D1(0) QLO2(b2, 1) D2(0) LO1 D3(0)
HI1 D1(0) QLO2(b2, 0) DCOUNT2 BRLOOP1 D2(3) LO1 D3(2) JMPLOOP2
#else
// no inline scaling - non-straight RGB ordering
HI1 D1(0) QLO2(b0, 7) LD2(b1,O1) D2(2) LO1 D3(0)
HI1 D1(0) QLO2(b0, 6) D2(0) LO1 D3(0)
HI1 D1(0) QLO2(b0, 5) D2(0) LO1 D3(0)
HI1 D1(0) QLO2(b0, 4) D2(0) LO1 D3(0)
HI1 D1(0) QLO2(b0, 3) D2(0) LO1 D3(0)
HI1 D1(0) QLO2(b0, 2) D2(0) LO1 D3(0)
HI1 D1(0) QLO2(b0, 1) D2(0) LO1 D3(0)
HI1 D1(0) QLO2(b0, 0) D2(0) LO1 D3(0)
HI1 D1(0) QLO2(b1, 7) LD2(b2,O2) D2(2) LO1 D3(0)
HI1 D1(0) QLO2(b1, 6) D2(0) LO1 D3(0)
HI1 D1(0) QLO2(b1, 5) D2(0) LO1 D3(0)
HI1 D1(0) QLO2(b1, 4) D2(0) LO1 D3(0)
HI1 D1(0) QLO2(b1, 3) D2(0) LO1 D3(0)
HI1 D1(0) QLO2(b1, 2) D2(0) LO1 D3(0)
HI1 D1(0) QLO2(b1, 1) D2(0) LO1 D3(0)
HI1 D1(0) QLO2(b1, 0) IDATA2 D2(2) LO1 D3(0)
HI1 D1(0) QLO2(b2, 7) LD2(b0,O0) D2(2) LO1 D3(0)
HI1 D1(0) QLO2(b2, 6) D2(0) LO1 D3(0)
HI1 D1(0) QLO2(b2, 5) D2(0) LO1 D3(0)
HI1 D1(0) QLO2(b2, 4) D2(0) LO1 D3(0)
HI1 D1(0) QLO2(b2, 3) D2(0) LO1 D3(0)
HI1 D1(0) QLO2(b2, 2) D2(0) LO1 D3(0)
HI1 D1(0) QLO2(b2, 1) D2(0) LO1 D3(0)
HI1 D1(0) QLO2(b2, 0) DCOUNT2 BRLOOP1 D2(3) LO1 D3(2) JMPLOOP2
#endif
DONE
D2(4) LO1 D3(0)
}
}
}
#ifdef SUPPORT_ARGB
virtual void showARGB(struct CARGB *data, int nLeds) {
// TODO: IMPLEMENTME
}
#endif
};
#endif