-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path20.cpp
54 lines (44 loc) · 1.17 KB
/
20.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
/*
Permutation Sequence
--------------------
The set [1,2,3,...,n] contains a total of n! unique permutations.
By listing and labeling all of the permutations in order, we get the following sequence for n = 3:
"123"
"132"
"213"
"231"
"312"
"321"
Given n and k, return the kth permutation sequence.
Note:
Given n will be between 1 and 9 inclusive.
Given k will be between 1 and n! inclusive.
Example 1:
Input: n = 3, k = 3
Output: "213"
Example 2:
Input: n = 4, k = 9
Output: "2314"
*/
class Solution {
public:
string getPermutation(int n, int k) {
string ans = "";
vector <char> candidates(n);
for(long long i = 0; i < n; i++)
candidates[i] = ((i + 1) + '0');
vector <long long> fact(n + 1);
fact[0] = 1;
for(long long i = 1; i <= n; i++)
fact[i] = fact[i - 1] * i;
k--;
for(long long i = n - 1; i >= 0; i--){
long long idx = k / fact[i];
ans += candidates[idx];
for(long long j = idx; j + 1< candidates.size(); j++)
candidates[j] = candidates[j + 1];
k = k % fact[i];
}
return ans;
}
};