-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path29.cpp
48 lines (33 loc) · 1.02 KB
/
29.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
/*
Unique Paths
------------
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 7 x 3 grid. How many possible unique paths are there?
Example 1:
Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
1. Right -> Right -> Down
2. Right -> Down -> Right
3. Down -> Right -> Right
Example 2:
Input: m = 7, n = 3
Output: 28
Constraints:
1 <= m, n <= 100
It's guaranteed that the answer will be less than or equal to 2 * 10 ^ 9.
*/
class Solution {
public:
int uniquePaths(int a, int b) {
long long path = 1, m = a, n = b;
for (long long i = n; i < (m + n - 1); i++) {
path *= i;
path /= (i - n + 1);
}
return path;
}
};