-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuild_engine_orin.py
261 lines (219 loc) · 8.88 KB
/
build_engine_orin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
# THIS IS A SCRIPT FOR ORIN AGX, NOT XAVIER AGX. SOFTWARES ARE NOT INCOMPATIBLE.
import tensorrt as trt
import sys, os
import logging
from pathlib import Path
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
logging.basicConfig(level=logging.INFO)
logging.getLogger("EngineBuilder").setLevel(logging.INFO)
log = logging.getLogger("EngineBuilder")
class EngineCalibrator(trt.IInt8EntropyCalibrator2):
"""
Implements the INT8 Entropy Calibrator 2.
"""
def __init__(self, cache_file):
"""
:param cache_file: The location of the cache file.
"""
super().__init__()
self.cache_file = cache_file
self.image_batcher = None
self.batch_allocation = None
self.batch_generator = None
# def set_image_batcher(self, image_batcher: ImageBatcher):
# """
# Define the image batcher to use, if any. If using only the cache file, an image batcher doesn't need
# to be defined.
# :param image_batcher: The ImageBatcher object
# """
# self.image_batcher = image_batcher
# size = int(np.dtype(self.image_batcher.dtype).itemsize * np.prod(self.image_batcher.shape))
# self.batch_allocation = cuda.mem_alloc(size)
# self.batch_generator = self.image_batcher.get_batch()
def get_batch_size(self):
"""
Overrides from trt.IInt8EntropyCalibrator2.
Get the batch size to use for calibration.
:return: Batch size.
"""
if self.image_batcher:
return self.image_batcher.batch_size
return 1
def get_batch(self, names):
"""
Overrides from trt.IInt8EntropyCalibrator2.
Get the next batch to use for calibration, as a list of device memory pointers.
:param names: The names of the inputs, if useful to define the order of inputs.
:return: A list of int-casted memory pointers.
"""
if not self.image_batcher:
return None
try:
batch, _ = next(self.batch_generator)
log.info(
"Calibrating image {} / {}".format(
self.image_batcher.image_index, self.image_batcher.num_images
)
)
cuda.memcpy_htod(self.batch_allocation, np.ascontiguousarray(batch))
return [int(self.batch_allocation)]
except StopIteration:
log.info("Finished calibration batches")
return None
def read_calibration_cache(self):
"""
Overrides from trt.IInt8EntropyCalibrator2.
Read the calibration cache file stored on disk, if it exists.
:return: The contents of the cache file, if any.
"""
if os.path.exists(self.cache_file):
with open(self.cache_file, "rb") as f:
log.info("Using calibration cache file: {}".format(self.cache_file))
return f.read()
def write_calibration_cache(self, cache):
"""
Overrides from trt.IInt8EntropyCalibrator2.
Store the calibration cache to a file on disk.
:param cache: The contents of the calibration cache to store.
"""
with open(self.cache_file, "wb") as f:
log.info("Writing calibration cache data to: {}".format(self.cache_file))
f.write(cache)
def build_engine_caffe(
model_file, deploy_file, runs_on_gpu, trans_layer, calibration_files
):
with trt.Builder(
TRT_LOGGER
) as builder, builder.create_network() as network, builder.create_builder_config() as config, trt.CaffeParser() as parser:
NUM_IMAGES_PER_BATCH = 1
# batchstream = ImageBatchStream(NUM_IMAGES_PER_BATCH, calibration_files.read)
# Int8_calibrator = PythonEntropyCalibrator(["data"], batchstream)
# config.max_workspace_size = 1 * 1 << 30
# config.flags = 1 << int(trt.BuilderFlag.INT8)
config.set_flag(trt.BuilderFlag.INT8)
config.int8_calibrator = EngineCalibrator(calibration_files)
# config.flags = 1 << int(trt.BuilderFlag.FP16)
# config.int8_calibrator = calibration_files
config.DLA_core = 0
config.flags = config.flags | 1 << int(trt.BuilderFlag.GPU_FALLBACK)
# config.flags = (config.flags | 1 << int(trt.BuilderFlag.FP16))
builder.max_batch_size = 1
model_tensors = parser.parse(
deploy=deploy_file,
model=model_file,
network=network,
dtype=trt.float32,
)
# CHANGE THIS FOR GPU
if runs_on_gpu:
device_type = trt.DeviceType.GPU
else:
device_type = trt.DeviceType.DLA
for i, layer in enumerate(network):
config.set_device_type(layer, trt.DeviceType.GPU)
if runs_on_gpu:
config.set_device_type(layer, trt.DeviceType.DLA) # DLA
if i <= trans_layer:
config.set_device_type(layer, trt.DeviceType.GPU)
# if i==latestLayer:
# network.mark_output(network.get_layer(network.num_layers-1).get_output(0))
# if i==latestLayer:
# network.mark_output(model_tensors.find(layer.name))
else:
config.set_device_type(layer, trt.DeviceType.GPU)
if i <= trans_layer:
config.set_device_type(layer, trt.DeviceType.DLA) # DLA
# if i==latestLayer:
# network.mark_output(network.get_layer(network.num_layers-1).get_output(0))
# network.mark_output(model_tensors.find(layer.name))
# if i==output_layer:
# # print(output_layer)
# network.mark_output(model_tensors.find(layer.name))
# network.mark_output(model_tensors.find("prob"))
# return 0
network.mark_output(network.get_layer(network.num_layers - 1).get_output(0))
return builder.build_serialized_network(network, config)
def save_engine(serialized_engine, save_file):
with open(save_file, "wb") as f:
f.write(serialized_engine)
if __name__ == "__main__":
calibration_files = "calibrator_networks/googlenet_calibration"
nn_protoxt_path = "prototxt_input_files/googlenet.prototxt" # This variable must be modified for the correct PATH.
count = 0
batch = 1
transition = -1
serialized_engine = serialized_engine = build_engine_caffe(
None, nn_protoxt_path, True, transition, calibration_files
)
save_engine(
serialized_engine,
str("baseline_engines/googlenet_only_gpu.plan"),
)
transition = 24
serialized_engine = serialized_engine = build_engine_caffe(
None, nn_protoxt_path, False, transition, calibration_files
)
save_engine(
serialized_engine,
str("baseline_engines/googlenet_dla_transition_at_24.plan"),
)
transition = 81
serialized_engine = serialized_engine = build_engine_caffe(
None, nn_protoxt_path, False, transition, calibration_files
)
save_engine(
serialized_engine,
str("baseline_engines/googlenet_dla_transition_at_81.plan"),
)
transition = 38
serialized_engine = serialized_engine = build_engine_caffe(
None, nn_protoxt_path, False, transition, calibration_files
)
save_engine(
serialized_engine,
str("baseline_engines/googlenet_dla_transition_at_38.plan"),
)
calibration_files = "calibrator_networks/resnet101_calibration"
nn_protoxt_path = "prototxt_input_files/resnet101.prototxt" # This variable must be modified for the correct PATH.
count = 0
batch = 1
transition = -1
serialized_engine = serialized_engine = build_engine_caffe(
None, nn_protoxt_path, True, transition, calibration_files
)
save_engine(
serialized_engine,
str("baseline_engines/resnet101_only_gpu.plan"),
)
transition =999
serialized_engine = serialized_engine = build_engine_caffe(
None, nn_protoxt_path, True, transition, calibration_files
)
save_engine(
serialized_engine,
str("baseline_engines/resnet101_only_dla.plan"),
)
transition = 101
serialized_engine = serialized_engine = build_engine_caffe(
None, nn_protoxt_path, True, transition, calibration_files
)
save_engine(
serialized_engine,
str("baseline_engines/resnet101_gpu_transition_at_101.plan"),
)
transition = 415
serialized_engine = serialized_engine = build_engine_caffe(
None, nn_protoxt_path, True, transition, calibration_files
)
save_engine(
serialized_engine,
str("baseline_engines/resnet101_gpu_transition_at_415.plan"),
)
transition = 312
serialized_engine = serialized_engine = build_engine_caffe(
None, nn_protoxt_path, True, transition, calibration_files
)
save_engine(
serialized_engine,
str("baseline_engines/resnet101_gpu_transition_at_312.plan"),
)