-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspeaker.py
215 lines (188 loc) · 9.65 KB
/
speaker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
"""
@Author: Iordanis Thoidis
@Date: 11/5/23
@Link: https://github.com/ithoidis/Perceptual-Speaker-Embeddings-Listening-Test
"""
import time
import os
from psychopy import prefs, core
prefs.hardware['audioLib'] = ['PTB']
from psychopy.sound.backend_ptb import SoundPTB
import numpy as np
import pandas as pd
from psychopy import visual, event
from utils import rms, apply_raised_cosine_ramp, silence, attenuate_sound, read_audio
from export_stimuli import check_data
def speaker_discrimination_block(participant, session, ear='both', level=-5, n_trials=40, noise=None, snr=None,
feedback=False, reverse_order=False):
"""
:param participant: (string) The ID of the participant or 'training'. It is used as an identifier for the results
file.
:param session: Number of Session to run. In [1], 2 sessions of 40 trials were used.
:param ear: Both for diotic stimulus, left/right for lateral.
:param level: Sound presentation level in dB FS. Make sure to calibrate the headphone output first.
:param n_trials: Number of trials to run
:param noise: None for no noise, 'iltass' for speech-shaped noise, and 'babble' for babble noise. Default=None
:param snr: The signal-to-noise ratio. Default=None
:param feedback: Whether to provide feedback to the participant
:param reverse_order: If True, the stimulus order presentation is reversed (speaker1 - silence - speaker2).
Default=False
[1] Thoidis, Iordanis, Clément Gaultier, and Tobias Goehring. "Perceptual Analysis of Speaker Embeddings for Voice
Discrimination between Machine And Human Listening." In ICASSP 2023-2023 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 1-5. IEEE, 2023.
"""
# Presentation level in dB FS
assert level <= 0.0
assert ear in ['left', 'right', 'both']
assert noise in [None, 'babble', 'iltass']
assert snr in [None, 2, 5, 6]
root = 'Audio/LibriSpeech'
segment = 3.
interval = 1.5
window.flip()
# initialize Sound PTB engine. Sample rate has to be 44100/48000 to be compatible with the audio interface used.
fs = 48000
audio = SoundPTB(stereo=True, volume=1.0, sampleRate=48000, blockSize=128, hamming=False, autoLog=True)
x_n = []
if noise is not None:
assert snr is not None
_, x_n = read_audio('Audio/Noises/%s.wav' % noise, target_fs=48000)
def stimulus(x1, x2, interval_duration, stim_fs=16000, stim_level=-10.0, stim_ear='left'):
x1 = x1 / rms(x1) * 0.05
x2 = x2 / rms(x2) * 0.05
x1 = apply_raised_cosine_ramp(x1, stim_fs, onset_duration_ms=50, offset_duration_ms=50)
x2 = apply_raised_cosine_ramp(x2, stim_fs, onset_duration_ms=50, offset_duration_ms=50)
if np.random.randint(0, 1):
x_prim = np.concatenate((x1, silence(interval_duration, stim_fs), x2), axis=0)
else:
x_prim = np.concatenate((x2, silence(interval_duration, stim_fs), x1), axis=0)
if stim_ear == 'left':
x_left, x_right = x_prim, np.zeros_like(x_prim)
elif stim_ear == 'right':
x_left, x_right = np.zeros_like(x_prim), x_prim
else:
x_left, x_right = x_prim, x_prim
x_left = apply_raised_cosine_ramp(x_left, stim_fs, onset_duration_ms=20, offset_duration_ms=20)
x_right = apply_raised_cosine_ramp(x_right, stim_fs, onset_duration_ms=20, offset_duration_ms=20)
x_left = attenuate_sound(x_left, stim_level)
x_right = attenuate_sound(x_right, stim_level)
x_prim = [x_left, x_right]
if np.amax(np.abs(x_prim)) >= 1:
print(np.amax(np.abs(x_left)), np.amax(np.abs(x_right)))
print('this will clip!')
return np.array(x_prim).transpose()
if participant == 'training':
filepath = 'Audio/speaker_embeddings/training_clean.pkl'
else:
filepath = 'Audio/speaker_embeddings/speaker_sample_pairs_%s_%s.pkl' % (noise if noise is not None else 'clean',
str(snr) if snr is not None else '')
meta = pd.read_pickle(filepath).to_dict('records')
text = visual.TextStim(window, text="", pos=(0, 0), color=(1, 1, 1))
text.draw()
window.flip()
text.setText("Session %s\n%s %s\nPress space to begin" % (str(session+1) if participant != 'training' else
'Training', noise if noise is not None else '',
str(snr) if snr is not None else ''))
text.draw()
window.flip()
key = event.waitKeys(keyList=['space', 'escape'])
if 'escape' in key:
return
results = []
for trial in range(session * n_trials, (session+1) * n_trials):
text.setText("")
text.draw()
window.flip()
core.wait(1.)
_, speech1 = read_audio(os.path.join(root, meta[trial]['speech_id1'].replace('.wav', '.flac')), target_fs=fs)
_, speech2 = read_audio(os.path.join(root, meta[trial]['speech_id2'].replace('.wav', '.flac')), target_fs=fs)
speech1 = speech1[:int(fs * segment)]
speech2 = speech2[:int(fs * segment)]
if reverse_order:
speech1, speech2 = speech2, speech1
if noise is not None:
# get random noise segment
noise_start = np.random.randint(0, len(x_n) - segment * fs - 1)
x_n_segment = x_n[noise_start:int(noise_start+segment*fs)]
# apply the same noise in both segments in the same SNR.
pre_snr = np.sqrt(np.mean(speech1 ** 2)) / (np.sqrt(np.mean(x_n_segment ** 2)) + 1e-6)
scale_factor = 10. ** (-1 * snr / 20.) * pre_snr
speech1 = speech1[:len(x_n)] + x_n_segment * scale_factor if len(speech1) > len(x_n_segment) \
else speech1 + x_n[:len(speech1)] * scale_factor
pre_snr = np.sqrt(np.mean(speech2 ** 2)) / (np.sqrt(np.mean(x_n_segment ** 2)) + 1e-6)
scale_factor = 10. ** (-1 * snr / 20.) * pre_snr
speech2 = speech2[:len(x_n)] + x_n_segment * scale_factor if len(speech2) > len(x_n_segment) \
else speech2 + x_n[:len(speech2)] * scale_factor
x = stimulus(speech1, speech2, interval, stim_fs=fs, stim_level=level, stim_ear=ear)
audio.setSound(x)
audio.play()
core.wait(x.shape[0] / audio.sampleRate - 0.05)
text.setText("Speaker\n Same or Different?\n 1 <-> 0 ")
text.draw()
window.flip()
event.clearEvents()
key = event.waitKeys(keyList=['1', '0', 'return', 'escape'])
if 'escape' in key:
return
if 'return' not in key:
speaker_id1, speaker_id2 = int(meta[trial]['speech_id1'].split('-')[0]), int(
meta[trial]['speech_id2'].split('-')[0])
response = 1 * ('1' in key)
is_correct = 'Correct' if (speaker_id1 == speaker_id2) == response else 'Wrong'
if feedback:
text.setText(is_correct)
else:
text.setText('Next\n\n%d/%d' % ((trial % n_trials)+1, n_trials))
text.draw()
window.flip()
core.wait(1.)
truth = 1 * (speaker_id1 == speaker_id2)
model_prediction = meta[trial]['prediction']
is_prediction_correct = 'Correct' if model_prediction == truth else 'Wrong'
print('%d - %s - Response: %s - '
'Predicted: %s - '
'Similarity: %.2f - '
'[%s, %s]' % (trial, 'Same' if truth else 'Diff', is_correct, is_prediction_correct,
meta[trial]['similarity'], meta[trial]['speech_id1'], meta[trial]['speech_id2']))
result = {'speech_id1': meta[trial]['speech_id1'],
'speech_id2': meta[trial]['speech_id2'],
'snr': snr,
'noise': noise,
'response': response,
'prediction': model_prediction,
'similarity': meta[trial]['similarity'],
'truth': 1 * (speaker_id1 == speaker_id2),
'session': session,
'ear': ear,
'participant': participant,
'trial': trial
}
results.append(result)
else:
pd.DataFrame(results).to_pickle('Results/speaker/' + participant + '_' + str(session) + '_' +
time.strftime("%h-%d-%Y_%I.%M.pkl"))
break
event.clearEvents() # clear other (e.g., mouse) events - they clog the buffer
if participant == 'training':
pd.DataFrame(results).to_pickle('Results/speaker/training' + time.strftime("%h-%d-%Y_%I.%M.pkl"))
else:
pd.DataFrame(results).to_pickle('Results/speaker/' + participant + '_' + str(session) +
time.strftime("%h-%d-%Y_%I.%M.pkl"))
text.setText("Session End!\n\n:)")
text.draw()
window.flip()
core.wait(1.)
def run_speaker_discrimination(participant):
speaker_discrimination_block('training', session=0, n_trials=5, feedback=True)
speaker_discrimination_block(participant, session=0)
speaker_discrimination_block(participant, session=1)
speaker_discrimination_block(participant, session=0, noise='iltass', snr=5)
speaker_discrimination_block(participant, session=1, noise='iltass', snr=5)
window = None
if __name__ == '__main__':
participant = input("Type your participant ID: ")
check_data()
window = visual.Window(fullscr=True, pos=[0, 0], color=(0, 0, 0))
run_speaker_discrimination(participant)
window.close()
core.quit()