-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcal_flops.py
40 lines (31 loc) · 1.49 KB
/
cal_flops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import time
import tensorflow as tf
from tensorflow.keras.models import load_model
from metrics import binary_crossentropy_dice_loss
def estimate_flops_and_params(model):
num_params = model.count_params()
try:
from tensorflow.profiler import Profiler
with Profiler(display_stdout=False) as profiler:
_ = model(tf.random.normal((1, 224, 224, 3)))
profile_results = profiler.get_results()
except ImportError:
print("Profiler not available, using approximate FLOP estimation.")
estimated_flops = 2 * num_params
gflops = estimated_flops / 1e9
print(f"Estimated GFLOPs (based on model size): {gflops:.4f}")
num_iterations = 100
total_inference_time = 0
for _ in range(num_iterations):
start_time = time.time()
_ = model.predict(tf.random.normal((1, 224, 224, 3)))
end_time = time.time()
total_inference_time += end_time - start_time
avg_inference_time = total_inference_time / num_iterations
print(f"Average Inference Time: {avg_inference_time:.4f} seconds")
return num_params, estimated_flops
if __name__ == "__main__":
trained_model_path = "model/model.keras"
loaded_model = load_model(trained_model_path, custom_objects={'binary_crossentropy_dice_loss': binary_crossentropy_dice_loss}) # Pass the custom loss function
loaded_model.summary()
num_model_params, estimated_model_flops = estimate_flops_and_params(loaded_model)