This list is not complete but aims to document any keys that are less than self-explanatory. Our godoc reference provides a more detailed list of API values. ClusterSpec, defined as kind: Cluster
in YAML, and InstanceGroup, defined as kind: InstanceGroup
in YAML, are the two top-level API values used to describe a cluster.
This object configures how we expose the API:
dns
will allow direct access to master instances, and configure DNS to point directly to the master nodes.loadBalancer
will configure a load balancer (ELB) in front of the master nodes, and configure DNS to point to the ELB.
DNS example:
spec:
api:
dns: {}
When configuring a LoadBalancer, you can also choose to have a public ELB or an internal (VPC only) ELB. The type
field should be Public
or Internal
.
Additionally, you can increase idle timeout of the load balancer by setting its idleTimeoutSeconds
. The default idle timeout is 5 minutes, with a maximum of 3600 seconds (60 minutes) being allowed by AWS.
For more information see configuring idle timeouts.
spec:
api:
loadBalancer:
type: Public
idleTimeoutSeconds: 300
This array configures the CIDRs that are able to ssh into nodes. On AWS this is manifested as inbound security group rules on the nodes
and master
security groups.
Use this key to restrict cluster access to an office ip address range, for example.
spec:
sshAccess:
- 12.34.56.78/32
This array configures the CIDRs that are able to access the kubernetes API. On AWS this is manifested as inbound security group rules on the ELB or master security groups.
Use this key to restrict cluster access to an office ip address range, for example.
spec:
kubernetesApiAccess:
- 12.34.56.78/32
ID of a subnet to share in an existing VPC.
The resource identifier (ID) of something in your existing VPC that you would like to use as "egress" to the outside world.
This feature was originally envisioned to allow re-use of NAT Gateways. In this case, the usage is as follows. Although NAT gateways are "public"-facing resources, in the Cluster spec, you must specify them in the private subnet section. One way to think about this is that you are specifying "egress", which is the default route out from this private subnet.
spec:
subnets:
- cidr: 10.20.64.0/21
name: us-east-1a
egress: nat-987654321
type: Private
zone: us-east-1a
- cidr: 10.20.32.0/21
name: utility-us-east-1a
id: subnet-12345
type: Utility
zone: us-east-1a
This block contains configuration for the kube-apiserver
.
Read more about this here: https://kubernetes.io/docs/admin/authentication/#openid-connect-tokens
spec:
kubeAPIServer:
oidcIssuerURL: https://your-oidc-provider.svc.cluster.local
oidcClientID: kubernetes
oidcUsernameClaim: sub
oidcGroupsClaim: user_roles
oidcCAFile: /etc/kubernetes/ssl/kc-ca.pem
Read more about this here: https://kubernetes.io/docs/admin/audit
spec:
kubeAPIServer:
auditLogPath: /var/log/kube-apiserver-audit.log
auditLogMaxAge: 10
auditLogMaxBackups: 1
auditLogMaxSize: 100
Keys and values here are translated into --runtime-config
values for kube-apiserver
, separated by commas.
Use this to enable alpha features, for example:
spec:
kubeAPIServer:
runtimeConfig:
batch/v2alpha1: "true"
apps/v1alpha1: "true"
Will result in the flag --runtime-config=batch/v2alpha1=true,apps/v1alpha1=true
. Note that kube-apiserver
accepts true
as a value for switch-like flags.
This block contains configurations for kubelet
. See https://kubernetes.io/docs/admin/kubelet/
NOTE: Where the corresponding configuration value can be empty, fields can be set to empty in the spec, and an empty string will be passed as the configuration value.
spec:
kubelet:
resolvConf: ""
Will result in the flag --resolv-conf=
being built.
spec:
kubelet:
featureGates:
ExperimentalCriticalPodAnnotation: "true"
AllowExtTrafficLocalEndpoints: "false"
Will result in the flag --feature-gates=ExperimentalCriticalPodAnnotation=true,AllowExtTrafficLocalEndpoints=false
spec:
kubelet:
kubeReserved:
cpu: "100m"
memory: "100Mi"
storage: "1Gi"
kubeReservedCgroup: "/kube-reserved"
systemReserved:
cpu: "100m"
memory: "100Mi"
storage: "1Gi"
systemReservedCgroup: "/system-reserved"
enforceNodeAllocatable: "pods,system-reserved,kube-reserved"
Will result in the flag --kube-reserved=cpu=100m,memory=100Mi,storage=1Gi --kube-reserved-cgroup=/kube-reserved --system-reserved=cpu=100mi,memory=100Mi,storage=1Gi --system-reserved-cgroup=/system-reserved --enforce-node-allocatable=pods,system-reserved,kube-reserved
Learn more about reserving compute resources.
On AWS, this is the id of the VPC the cluster is created in. If creating a cluster from scratch, this field does not need to be specified at create time; kops
will create a VPC
for you.
spec:
networkID: vpc-abcdefg1
More information about running in an existing VPC is here.
Hooks allow for the execution of an action before the installation of Kubernetes on every node in a cluster. For instance you can install nvidia drivers for using GPUs. This hooks can be in the form on docker images or manifest files (systemd units). Hooks can be place in either then cluster spec, meaning the will be globally deployed, or they can be placed into the instanceGroup specification. Note, service names on the instanceGroup which overlap with the cluster spec take precedence and ignore the cluster spec definition, i.e. if you have a unit file 'myunit.service' in cluster and then one in the instanceGroup, only the instanceGroup is applied.
spec:
# many sections removed
hooks:
- before:
- some_service.service
requires:
- docker.service
execContainer:
image: kopeio/nvidia-bootstrap:1.6
# these are added as -e to the docker environment
environment:
AWS_REGION: eu-west-1
SOME_VAR: SOME_VALUE
# or a raw systemd unit
hooks:
- name: iptable-restore.service
roles:
- Node
- Master
before:
- kubelet.service
manifest: |
[Service]
EnvironmentFile=/etc/environment
# do some stuff
# or disable a systemd unit
hooks:
- name: update-engine.service
disable: true
# or you could wrap this into a full unit
hooks:
- name: disable-update-engine.service
before:
- update-engine.service
manifest: |
Type=oneshot
ExecStart=/usr/bin/systemctl stop update-engine.service
Install Ceph
spec:
# many sections removed
hooks:
- execContainer:
command:
- sh
- -c
- chroot /rootfs apt-get update && chroot /rootfs apt-get install -y ceph-common
image: busybox
If you are using aws as cloudProvider
, you can disable authorization of ELB security group to Kubernetes Nodes security group. In other words, it will not add security group rule.
This can be usefull to avoid AWS limit: 50 rules per security group.
spec:
cloudConfig:
disableSecurityGroupIngress: true
If you have a bunch of Docker instances (physicsal or vm) running, each time one of them pulls an image that is not present on the host, it will fetch it from the internet (DockerHub). By caching these images, you can keep the traffic within your local network and avoid egress bandwidth usage. This setting benefits not only cluster provisioning but also image pulling.
@see Cache-Mirror Dockerhub For Speed @see Configure the Docker daemon.
spec:
docker:
registryMirrors:
- https://registry.example.com
For avoid to create security group per each elb, you can specify security group id, that will be assigned to your LoadBalancer. It must be security group id, not name. Also, security group must be empty, because Kubernetes will add rules per ports that are specified in service file. This can be usefull to avoid AWS limits: 500 security groups per region and 50 rules per security group.
spec:
cloudConfig:
elbSecurityGroup: sg-123445678