<footer>
+
+Athreya et al. "RDPG..." _JMLR_ (2021)
+
+</footer>
- Causal models = rigorous, interpretab
![w:450](../images/logos/brain-logo.jpeg)
- NeurIPS Workshop (x1)
- Collaboration with Alex Badea
- $P[i\rightarrow j]$ = $\langle x_i, x_j\rangle$
\ No newline at end of file
diff --git a/docs/committee/committee.md b/docs/committee/committee.md
index de5262c..bef0358 100644
--- a/docs/committee/committee.md
+++ b/docs/committee/committee.md
@@ -107,7 +107,7 @@ Networks (or graphs) are mathematical abstractions to represent relational data
@@ -146,207 +146,183 @@ Networks (or graphs) are mathematical abstractions to represent relational data
# Statistical Models for Networks
- Random dot product graphs (RDPGs)
- - Each vertex has a low $d$ dimensional latent vector.
+ - Each vertex has a low $d$ dimensional latent position.
- Estimate latent position matrix $X$ via adjacency spectral embedding.
- $P[i\rightarrow j]$ = $\langle x_i, x_j\rangle$
-
-
![center h:300](./images/ase.png)
----
+
---
-# Outline
+# Two sample graph testing
-- What we've done
+
- - Connectomes of Human Brains
- - Statistical Modeling for Connectomes
- - **Heritability of Human Connectomes**
- - `graspologic` + `hyppo` + `m2g`
+
-- Graduation plan
+- Suppose we have two networks
+- Want to test if they are "same" or not
----
+Hypothesis:
-# Heritability as causal problem
+- $H_0: F($Network 1$) = F($Network 2$)$
+- $H_A: F($Network 1$) \neq F($Network 2$)$
-![center h:500](../images/heritability/dag.png)
+More precisely:
-
+
-
+###### Drosophila Left vs Right Brain
----
+![center w:450](./images/nonpar.png)
-# Do genomes affect connectomes?
+
-- Alternatively:
- $H_0: F($Connectome, Genome$) = F($Connectome$)F($Genome$)$
- $H_A: F($Connectome, Genome$) \neq F($Connectome$)F($Genome$)$
+
---
-# How do we compare connectomes?
+# Outline
-- Random dot product graph (RDPG)
+- What we've done
- - Each vertex (region of interest) has a low $d$ dimensional latent vector (position).
- - Estimate latent position matrix $X$ via adjacency spectral embedding.
-
+ - Connectomes of Human Brains
+ - Statistical Modeling for Connectomes
+ - **Heritability of Human Connectomes**
+ - `graspologic` + `hyppo` + `m2g`
-- d(Connectome$_k$, Connectome$_l$) = $||X^{(k)} - X^{(l)}R||_F$
+- Graduation plan
---
-# Distance correlation
-
-- Measures dependence between two _multivariate_ quantities.
- - For example: connectomes, genomes.
-- Can detect nonlinear associations.
-- Measures correlation between pairwise distances.
+# Heritability as causal problem
-![center w:800](./images/unconditional_test.png)
+![center h:500](../images/heritability/dag.png)
----
+
---
-# Conditional distance correlation
+# Do genomes affect connectomes?
-- Augment distance correlation procedure with third distance matrix.
+
-
+
-![center h:350](./images/conditional_test.png)
+- Our hypothesis:
+ $H_0: F($C, G$) = F($C$)F($G$)$
+ $H_A: F($C, G$) \neq F($C$)F($G$)$
----
+- Known as independence testing
+- Test statistic: _distance correlation (Dcorr)_
+- Implication if false: there exists an **associational** heritability.
-# How do we compare genomes?
+
-- Neuroimaging twin studies do not sequence genomes.
-- Coefficient of kinship ($\phi_{ij}$)
- - Probabilities of finding a particular gene at a particular location.
-- d(Genome$_i$, Genome$_j$) = 1 - 2$\phi_{ij}$.
+
+
----
+![center](./images/associational.png)
-# Neuroanatomy (mediator), Age (confounder)
+
-- Literature show:
- - neuroanatomy (e.g. brain volume) is highly heritable.
- - age affects genomes and potentially connectomes
-- d(Covariates$_i$, Covariates$_j$) = ||Covariates$_i$ - Covariates$_j$||$_F$
+
---
-# Human Connectome Project
+# Do genomes affect connectomes given covariates?
-- Brain scans from identical (monozygotic), fraternal (dizygotic), non-twin siblings.
-- Regions defined using Glasser parcellation (180 regions).
+
+
-
+- Want to test:
+ $H_0: F($C, G|Co$) =
+ F($C|Co$) F($G|Co$)$
+ $H_A: F($C, G|Co$) \neq F($C|Co$)F($G|Co$)$
+- Known as conditional independence test
+- Test statistic: Conditional distance correlation (CDcorr)
+- Implication if false: there exists causal dependence of connectomes on genomes.
+
-![center w:700](./images/hcp_demographics.svg)
+
-
-
+
---
-# Associational Test for Connectomic Heritability
+# Methods of comparing connectomes
-- $H_0: F($Connectome, Genome$) = F($Connectome$)F($Genome$)$
- $H_A: F($Connectome, Genome$) \neq F($Connectome$)F($Genome$)$
+- Exact : measures all differences in latent positions
+ - Differences in the latent positions implying differences in the connectomes themselves
+- Global : considers the latent positions of one connectome are a scaled version of the other
+ - E.g. males may have globally fewer connections than females
+- Vertex : similar to the global differences, but it allows for each vertex to be scaled differently
+ - E.g regions have preferences in connections
+ - regions tend to connect strongly within hemisphere
-![center h:205](./images/hist-plot-connectomes.png)
+---
-
+# We see stochastic ordering along familial relationships
-
+![center w:700](./images/all-tests.png)
---
@@ -354,11 +330,10 @@ Glasser, Matthew F., et al. "A multi-modal parcellation of human cerebral cortex
![center h:250](./images/genome_to_connectome.png)
-- Present a causal model for heritability of connectomes.
-- Leveraged recent advances:
- 1. Statistical models for networks, allowing meaningful comparison of connectomes.
- 2. Distance and conditional distance correlation as test statistic for causal analysis$^1$.
-- Connectomes are dependent on genome, suggesting heritability.
+
+
+- Statistical models = nuanced investigations
+- Connectomes are dependent on genome, up to some common structures.
---
@@ -412,7 +387,7 @@ Glasser, Matthew F., et al. "A multi-modal parcellation of human cerebral cortex
[![h:30](https://img.shields.io/github/stars/neurodata/m2g?style=social)](https://github.com/neurodata/m2g)
[![h:30](https://img.shields.io/github/contributors/neurodata/m2g)](https://github.com/neurodata/m2g/graphs/contributors)
-![w:450](../images/logos/brain-logo.jpeg)
+
@@ -614,8 +589,6 @@ NeuroData lab, Microsoft Research
---
-![bg center blur:3px opacity:20%](../../images/background.svg)
-
# Feedback?
@@ -635,3 +608,145 @@ section {
![icon](../images/icons/mail.png) [j1c@jhu.edu](mailto:j1c@jhu.edu)
![icon](../images/icons/github.png) [@j1c (Github)](https://github.com/j1c)
![icon](../images/icons/web.png) [j1c.org](https://j1c.org/)
+
+---
+
+
+
+# Appendix
+
+---
+
+# How do we compare genomes?
+
+- Neuroimaging twin studies do not sequence genomes.
+- Coefficient of kinship ($\phi_{ij}$)
+ - Probabilities of finding a particular gene at a particular location.
+- d(Genome$_i$, Genome$_j$) = 1 - 2$\phi_{ij}$.
+
+
+