-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdecode.py
executable file
·161 lines (139 loc) · 5.59 KB
/
decode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#! env python3
# Processes segment data from a Seelevel tank sensor into a liquid level.
# This script is useful for comparing the behavior of different algorithms.
#
# Usage:
#
# Configure ESPHome with a seelevel sensor and enable the segment_data sensor.
# Open the History tab in Home Assistant.
# Pick a least one segment data sensor entities to decode and a time range.
# Download the data as CSV.
# Run this script, passing the downloaded history.csv file as input.
# You may need to widen your terminal to view the plot without line wrapping.
#
# This script is not fully parameterized at the command-line and it is meant to
# be edited while running experiments.
from collections import namedtuple
import csv
from datetime import datetime
import sys
# Determines the liquid level from the highest segment whose signal level is
# above a fixed threshold.
def decode_stepwise(segments):
THRESHOLD = 120
count = len(segments)
for i in range(0, count):
if segments[i] < THRESHOLD:
return i
return count
# Determines the liquid level proportional to the signal level of the last non-full
# segment based on a dynamically determined threshold. Makes dubious assumptions about
# the likely signal level range when we don't have a wide distribution to work with.
def decode_proportional(segments):
count = len(segments)
high = min(max(max(segments), 120), 200)
low = max(min(min(segments), high * 0.25), 20)
thresh = low + (high - low) * 0.6
for i in range(0, count):
if segments[i] < thresh:
return round(i + min(max(segments[i] - low, 0) / (thresh - low), 1), 1)
return count
# Determines the liquid level by searching for a drop-off in signal level across the
# segments then allocating a proportion based on an assumed noise floor. This one
# is based on the observation that signal level tends to increase monotonically
# closer to the air/liquid boundary (so it is lower at the bottom of the tank).
def decode_boundary(segments):
count = len(segments)
thresh = 120
for i in range(0, count):
x = segments[i]
if x < thresh:
low = thresh / 3
return round(i + max((x - low) / (thresh - low), 0), 1)
thresh = max(thresh, segments[i] * 0.9)
return count
DECODERS = [decode_boundary]
GRAPHIC_MAX_LEVEL = 9
GRAPHIC_COLUMNS = 60
DEDUPE_PLOT_DATA = False
DEBUG_RAW_SAMPLES = False
Sample = namedtuple('Sample', ('time', 'levels', 'raw'))
def plot(series, aliases):
for entity, alias in aliases.items():
print(f'{alias}: {entity}')
print()
last_levels = None
levels = {}
empty = b' ' * GRAPHIC_COLUMNS
for sample in series:
levels.update(sample.levels)
if DEDUPE_PLOT_DATA and levels == last_levels:
continue
last_levels = dict(levels)
graphic = bytearray(empty)
labels = ''
for alias, level in levels.items():
if level is None:
continue
pos = round((level / GRAPHIC_MAX_LEVEL) * (GRAPHIC_COLUMNS - 3))
if pos < 0:
graphic[0] = ord('<')
elif pos > GRAPHIC_COLUMNS - 2:
graphic[-1] = ord('>')
else:
graphic[pos + 1] = ord(alias)
labels += ' %c %0.1f ' % (alias, level)
if levels.get('F') is not None and levels.get('G') is not None:
labels += ' F+G %0.1f ' % (levels['F'] + levels['G'])
if levels.get('f') is not None and levels.get('g') is not None:
labels += ' f+g %0.1f ' % (levels['f'] + levels['g'])
print(f'{sample.time.astimezone().strftime('%d/%m/%y %H:%M:%S')} -{graphic.decode()}-{labels}')
if DEBUG_RAW_SAMPLES:
for alias in sorted(sample.raw.keys()):
print(f' \u001b[2m{alias}: {sample.raw[alias]}\u001b[0m')
def make_pretty_alias(entity):
if entity.find('gray') != -1 or entity.find('grey') != -1:
return 'G'
elif entity.find('fresh') != -1:
return 'F'
elif entity.find('black') != -1:
return 'B'
return 'W'
def main() -> int:
if len(sys.argv) != 2:
print(f'Usage: {sys.argv[0]} history.csv')
return 1
# Parse the file into a decoded time series
aliases = {}
series = []
with open(sys.argv[1], newline='') as file:
reader = csv.reader(file)
header = next(reader)
if header != ['entity_id', 'state', 'last_changed']:
print('Did not find expected header, is this actually a history.csv file?')
return 1
for row in reader:
if len(row) != 3:
print(f'Malformed row: ${row}')
continue
entity = row[0]
state = row[1]
segments = [int(x) for x in state.split(',')] if state != 'unknown' and state != 'unavailable' else None
time = datetime.fromisoformat(row[2])
alias = aliases.get(entity)
if alias is None:
alias = make_pretty_alias(entity)
while alias in aliases.values():
alias = chr(ord(alias) + 1)
aliases[entity] = alias
raw = { alias: segments }
levels = {}
for decoder in DECODERS:
levels[alias] = decoder(segments) if segments is not None else None
alias = alias.lower() # FIXME: This only works for up to two decoders
series.append(Sample(time, levels, raw))
series.sort(key=lambda sample: sample.time)
plot(series, aliases)
return 0
if __name__ == '__main__':
sys.exit(main()) # next section explains the use of sys.exit