-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPruebas_de_(Q→R)→((¬Q→¬P)→(P→R)).lean
161 lines (141 loc) · 3.85 KB
/
Pruebas_de_(Q→R)→((¬Q→¬P)→(P→R)).lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
-- Pruebas de (Q → R) → ((¬Q → ¬P) → (P → R))
-- ==========================================
-- ----------------------------------------------------
-- Ej. 1. (p. 10) Demostrar
-- (Q → R) → ((¬Q → ¬P) → (P → R))
-- ----------------------------------------------------
import tactic
variables (P Q R : Prop)
-- 1ª demostración
example :
(Q → R) → ((¬Q → ¬P) → (P → R)) :=
assume h1 : Q → R,
show (¬Q → ¬P) → (P → R), from
( assume h2 : ¬Q → ¬P,
show P → R, from
( assume h3 : P,
have h4 : ¬¬P, from not_not_intro h3,
have h5 : ¬¬Q, from mt h2 h4,
have h6 : Q, from not_not.mp h5,
show R, from h1 h6))
-- 2ª demostración
example :
(Q → R) → ((¬Q → ¬P) → (P → R)) :=
assume h1 : Q → R,
show (¬Q → ¬P) → (P → R), from
( assume h2 : ¬Q → ¬P,
show P → R, from
( assume h3 : P,
have h4 : ¬¬P, from not_not_intro h3,
have h5 : ¬¬Q, from mt h2 h4,
have h6 : Q, from not_not.mp h5,
h1 h6))
-- 3ª demostración
example :
(Q → R) → ((¬Q → ¬P) → (P → R)) :=
assume h1 : Q → R,
show (¬Q → ¬P) → (P → R), from
( assume h2 : ¬Q → ¬P,
show P → R, from
( assume h3 : P,
have h4 : ¬¬P, from not_not_intro h3,
have h5 : ¬¬Q, from mt h2 h4,
h1 (not_not.mp h5)))
-- 4ª demostración
example :
(Q → R) → ((¬Q → ¬P) → (P → R)) :=
assume h1 : Q → R,
show (¬Q → ¬P) → (P → R), from
( assume h2 : ¬Q → ¬P,
show P → R, from
( assume h3 : P,
have h4 : ¬¬P, from not_not_intro h3,
h1 (not_not.mp (mt h2 h4))))
-- 5ª demostración
example :
(Q → R) → ((¬Q → ¬P) → (P → R)) :=
assume h1 : Q → R,
show (¬Q → ¬P) → (P → R), from
( assume h2 : ¬Q → ¬P,
show P → R, from
( assume h3 : P,
h1 (not_not.mp (mt h2 (not_not_intro h3)))))
-- 6ª demostración
example :
(Q → R) → ((¬Q → ¬P) → (P → R)) :=
assume h1 : Q → R,
show (¬Q → ¬P) → (P → R), from
( assume h2 : ¬Q → ¬P,
show P → R, from
(λh3, h1 (not_not.mp (mt h2 (not_not_intro h3)))))
-- 7ª demostración
example :
(Q → R) → ((¬Q → ¬P) → (P → R)) :=
assume h1 : Q → R,
show (¬Q → ¬P) → (P → R), from
( assume h2 : ¬Q → ¬P,
(λh3, h1 (not_not.mp (mt h2 (not_not_intro h3)))))
-- 8ª demostración
example :
(Q → R) → ((¬Q → ¬P) → (P → R)) :=
assume h1 : Q → R,
show (¬Q → ¬P) → (P → R), from
( λh2,
(λh3, h1 (not_not.mp (mt h2 (not_not_intro h3)))))
-- 9ª demostración
example :
(Q → R) → ((¬Q → ¬P) → (P → R)) :=
assume h1 : Q → R,
(λ h2 h3, h1 (not_not.mp (mt h2 (not_not_intro h3))))
-- 10ª demostración
example :
(Q → R) → ((¬Q → ¬P) → (P → R)) :=
λ h1 h2 h3, h1 (not_not.mp (mt h2 (not_not_intro h3)))
-- 11ª demostración
example :
(Q → R) → ((¬Q → ¬P) → (P → R)) :=
begin
intro h1,
intro h2,
intro h3,
apply h1,
apply not_not.mp,
apply mt h2,
exact not_not_intro h3,
end
-- 12ª demostración
example :
(Q → R) → ((¬Q → ¬P) → (P → R)) :=
begin
intros h1 h2 h3,
apply h1,
apply not_not.mp,
apply mt h2,
exact not_not_intro h3,
end
-- 13ª demostración
example :
(Q → R) → ((¬Q → ¬P) → (P → R)) :=
begin
intros h1 h2 h3,
apply h1,
apply not_not.mp,
exact mt h2 (not_not_intro h3),
end
-- 14ª demostración
example :
(Q → R) → ((¬Q → ¬P) → (P → R)) :=
begin
intros h1 h2 h3,
exact h1 (not_not.mp (mt h2 (not_not_intro h3))),
end
-- 15ª demostración
example :
(Q → R) → ((¬Q → ¬P) → (P → R)) :=
λ h1 h2 h3, h1 (not_not.mp (mt h2 (not_not_intro h3)))
-- 16ª demostración
lemma aux :
(Q → R) → ((¬Q → ¬P) → (P → R)) :=
-- by hint
by finish
-- #print axioms aux