-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPruebas_de_P∨Q⊢Q∨P.lean
390 lines (344 loc) · 6.1 KB
/
Pruebas_de_P∨Q⊢Q∨P.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
-- Pruebas de P ∨ Q ⊢ Q ∨ P
-- ========================
import tactic
variables (P Q R : Prop)
-- ----------------------------------------------------
-- Ej. 1. (p. 11) Demostrar
-- P ∨ Q ⊢ Q ∨ P
-- ----------------------------------------------------
-- 1ª demostración
example
(h1 : P ∨ Q)
: Q ∨ P :=
or.elim h1
( assume h2 : P,
show Q ∨ P,
from or.inr h2 )
( assume h3 : Q,
show Q ∨ P,
from or.inl h3 )
-- 2ª demostración
example
(h1 : P ∨ Q)
: Q ∨ P :=
or.elim h1
( λ h, or.inr h )
( λ h, or.inl h )
-- 3ª demostración
example
(h1 : P ∨ Q)
: Q ∨ P :=
or.elim h1 or.inr or.inl
-- 4ª demostración
example
(h1 : P ∨ Q)
: Q ∨ P :=
h1.elim or.inr or.inl
-- 5ª demostración
example
(h1 : P ∨ Q)
: Q ∨ P :=
or.rec or.inr or.inl h1
-- 6ª demostración
example
(h1 : P ∨ Q)
: Q ∨ P :=
-- by library_search
or.swap h1
-- 7ª demostración
example
(h1 : P ∨ Q)
: Q ∨ P :=
begin
cases h1 with h2 h3,
{ exact or.inr h2, },
{ exact or.inl h3, },
end
-- 7ª demostración
example
(P ∨ Q)
: Q ∨ P :=
begin
cases ‹P ∨ Q›,
{ exact or.inr ‹P›, },
{ exact or.inl ‹Q›, },
end
-- 8ª demostración
example
(h1 : P ∨ Q)
: Q ∨ P :=
begin
cases h1 with h2 h3,
{ right,
exact h2, },
{ left,
exact h3, },
end
-- 9ª demostración
example
(h1 : P ∨ Q)
: Q ∨ P :=
-- by hint
by tauto
-- 10ª demostración
example
(h1 : P ∨ Q)
: Q ∨ P :=
by finish
-- ----------------------------------------------------
-- Ej. 2 (p. 12). Demostrar
-- Q → R ⊢ P ∨ Q → P ∨ R
-- ----------------------------------------------------
-- 1ª demostración
example
(h1 : Q → R)
: P ∨ Q → P ∨ R :=
assume h2 : P ∨ Q,
or.elim h2
( assume h3 : P,
show P ∨ R,
from or.inl h3 )
( assume h4 : Q,
have h5 : R := h1 h4,
show P ∨ R,
from or.inr h5 )
-- 2ª demostración
example
(h1 : Q → R)
: P ∨ Q → P ∨ R :=
assume h2 : P ∨ Q,
or.elim h2
( assume h3 : P, or.inl h3 )
( assume h4 : Q,
show P ∨ R,
from or.inr (h1 h4) )
-- 3ª demostración
example
(h1 : Q → R)
: P ∨ Q → P ∨ R :=
assume h2 : P ∨ Q,
or.elim h2
( assume h3 : P, or.inl h3 )
( assume h4 : Q, or.inr (h1 h4) )
-- 4ª demostración
example
(h1 : Q → R)
: P ∨ Q → P ∨ R :=
assume h2 : P ∨ Q,
or.elim h2
( λ h3, or.inl h3 )
( λ h4, or.inr (h1 h4) )
-- 5ª demostración
example
(h1 : Q → R)
: P ∨ Q → P ∨ R :=
assume h2 : P ∨ Q,
or.elim h2
or.inl
(λ h, or.inr (h1 h) )
-- 6ª demostración
example
(h1 : Q → R)
: P ∨ Q → P ∨ R :=
λ h2, or.elim h2 or.inl (λ h, or.inr (h1 h))
-- 7ª demostración
example
(h1 : Q → R)
: P ∨ Q → P ∨ R :=
λ h2, or.elim h2 or.inl (or.inr ∘ h1)
-- 8ª demostración
example
(h1 : Q → R)
: P ∨ Q → P ∨ R :=
λ h2, h2.elim or.inl (or.inr ∘ h1)
-- 9ª demostración
example
(h1 : Q → R)
: P ∨ Q → P ∨ R :=
-- by library_search
or.imp_right h1
-- 10ª demostración
example
(h1 : Q → R)
: P ∨ Q → P ∨ R :=
begin
intro h2,
cases h2 with h3 h4,
{ exact or.inl h3, },
{ exact or.inr (h1 h4), },
end
-- 11ª demostración
example
(h1 : Q → R)
: P ∨ Q → P ∨ R :=
begin
intro h2,
cases h2 with h3 h4,
{ left,
exact h3, },
{ right,
exact (h1 h4), },
end
-- 12ª demostración
example
(h1 : Q → R)
: P ∨ Q → P ∨ R :=
begin
rintro (h3 | h4),
{ left,
exact h3, },
{ right,
exact (h1 h4), },
end
-- 13ª demostración
example
(h1 : Q → R)
: P ∨ Q → P ∨ R :=
-- by hint
by tauto
-- 14ª demostración
example
(h1 : Q → R)
: P ∨ Q → P ∨ R :=
by finish
-- ----------------------------------------------------
-- Ej. 4 (p. 15). Demostrar
-- ¬P ∨ Q ⊢ P → Q
-- ----------------------------------------------------
-- 1ª demostración
example
(h1 : ¬P ∨ Q)
: P → Q :=
assume h2 : P,
or.elim h1
( assume h3 : ¬P,
have h4 : false,
from h3 h2,
show Q,
from false.elim h4)
( assume h5 : Q,
show Q, from h5)
-- 2ª demostración
example
(h1 : ¬P ∨ Q)
: P → Q :=
assume h2 : P,
or.elim h1
( assume h3 : ¬P,
have h4 : false,
from h3 h2,
show Q,
from false.elim h4)
( assume h5 : Q, h5)
-- 3ª demostración
example
(h1 : ¬P ∨ Q)
: P → Q :=
assume h2 : P,
or.elim h1
( assume h3 : ¬P,
have h4 : false,
from h3 h2,
show Q,
from false.elim h4)
( λ h5, h5)
-- 4ª demostración
example
(h1 : ¬P ∨ Q)
: P → Q :=
assume h2 : P,
or.elim h1
( assume h3 : ¬P,
have h4 : false,
from h3 h2,
show Q,
from false.elim h4)
id
-- 5ª demostración
example
(h1 : ¬P ∨ Q)
: P → Q :=
assume h2 : P,
or.elim h1
( assume h3 : ¬P,
show Q,
from false.elim (h3 h2))
id
-- 6ª demostración
example
(h1 : ¬P ∨ Q)
: P → Q :=
assume h2 : P,
or.elim h1
( assume h3 : ¬P, false.elim (h3 h2))
id
-- 7ª demostración
example
(h1 : ¬P ∨ Q)
: P → Q :=
assume h2 : P,
or.elim h1
( λ h3, false.elim (h3 h2))
id
-- 8ª demostración
example
(h1 : ¬P ∨ Q)
: P → Q :=
λ h2, or.elim h1 (λ h3, false.elim (h3 h2)) id
example
(h1 : ¬P ∨ Q)
: P → Q :=
λ h2, h1.elim (λ h3, false.elim (h3 h2)) id
example
(h1 : ¬P ∨ Q)
: P → Q :=
λ h2, h1.elim (λ h3, (h3 h2).elim) id
-- 9ª demostración
example
(h1 : ¬P ∨ Q)
: P → Q :=
-- by library_search
imp_iff_not_or.mpr h1
-- 10ª demostración
example
(h1 : ¬P ∨ Q)
: P → Q :=
begin
intro h2,
cases h1 with h3 h4,
{ apply false.rec,
exact h3 h2, },
{ exact h4, },
end
-- 11ª demostración
example
(h1 : ¬P ∨ Q)
: P → Q :=
begin
intro h2,
cases h1 with h3 h4,
{ exact false.elim (h3 h2), },
{ exact h4, },
end
-- 12ª demostración
example
(h1 : ¬P ∨ Q)
: P → Q :=
begin
intro h2,
cases h1 with h3 h4,
{ exfalso,
exact h3 h2, },
{ exact h4, },
end
-- 13ª demostración
example
(h1 : ¬P ∨ Q)
: P → Q :=
-- by hint
by tauto
-- 14ª demostración
example
(h1 : ¬P ∨ Q)
: P → Q :=
by finish