-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPruebas_de_Q→R⊢P∨Q→P∨R.lean
136 lines (119 loc) · 2.31 KB
/
Pruebas_de_Q→R⊢P∨Q→P∨R.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
-- Pruebas de Q → R ⊢ P ∨ Q → P ∨ R
-- ================================
-- ----------------------------------------------------
-- Ej. 1. (p. 12) Demostrar
-- Q → R ⊢ P ∨ Q → P ∨ R
-- ----------------------------------------------------
import tactic
variables (P Q R : Prop)
-- 1ª demostración
example
(h1 : Q → R)
: P ∨ Q → P ∨ R :=
assume h2 : P ∨ Q,
or.elim h2
( assume h3 : P,
show P ∨ R,
from or.inl h3 )
( assume h4 : Q,
have h5 : R := h1 h4,
show P ∨ R,
from or.inr h5 )
-- 2ª demostración
example
(h1 : Q → R)
: P ∨ Q → P ∨ R :=
assume h2 : P ∨ Q,
or.elim h2
( assume h3 : P, or.inl h3 )
( assume h4 : Q,
show P ∨ R,
from or.inr (h1 h4) )
-- 3ª demostración
example
(h1 : Q → R)
: P ∨ Q → P ∨ R :=
assume h2 : P ∨ Q,
or.elim h2
( assume h3 : P, or.inl h3 )
( assume h4 : Q, or.inr (h1 h4) )
-- 4ª demostración
example
(h1 : Q → R)
: P ∨ Q → P ∨ R :=
assume h2 : P ∨ Q,
or.elim h2
(λ h3, or.inl h3)
(λ h4, or.inr (h1 h4))
-- 5ª demostración
example
(h1 : Q → R)
: P ∨ Q → P ∨ R :=
assume h2 : P ∨ Q,
or.elim h2
or.inl
(λ h, or.inr (h1 h) )
-- 6ª demostración
example
(h1 : Q → R)
: P ∨ Q → P ∨ R :=
λ h2, or.elim h2 or.inl (λ h, or.inr (h1 h))
-- 7ª demostración
example
(h1 : Q → R)
: P ∨ Q → P ∨ R :=
λ h2, h2.elim or.inl (λ h, or.inr (h1 h))
-- 8ª demostración
example
(h1 : Q → R)
: P ∨ Q → P ∨ R :=
λ h2, h2.elim or.inl (or.inr ∘ h1)
-- 9ª demostración
example
(h1 : Q → R)
: P ∨ Q → P ∨ R :=
-- by library_search
or.imp_right h1
-- 10ª demostración
example
(h1 : Q → R)
: P ∨ Q → P ∨ R :=
begin
intro h2,
cases h2 with h3 h4,
{ left,
exact h3, },
{ right,
exact (h1 h4), },
end
-- 11ª demostración
example
(h1 : Q → R)
: P ∨ Q → P ∨ R :=
begin
rintro (h3 | h4),
{ left,
exact h3, },
{ right,
exact (h1 h4), },
end
-- 12ª demostración
example
(h1 : Q → R)
: P ∨ Q → P ∨ R :=
begin
rintro (h3 | h4),
{ exact or.inl h3, },
{ exact or.inr (h1 h4), },
end
-- 13ª demostración
example
(h1 : Q → R)
: P ∨ Q → P ∨ R :=
-- by hint
by tauto
-- 14ª demostración
example
(h1 : Q → R)
: P ∨ Q → P ∨ R :=
by finish