-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPruebas_de_∃xP(x)∨∃xQ(x)↔∃x(P(x)∨Q(x)).lean
273 lines (243 loc) · 6.23 KB
/
Pruebas_de_∃xP(x)∨∃xQ(x)↔∃x(P(x)∨Q(x)).lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
-- Pruebas de ∃x (P(x) ∨ Q(x)) ↔ ∃x P(x) ∨ ∃x Q(x)
-- ===============================================
import tactic
section
variable {U : Type}
variables {P Q : U -> Prop}
-- ----------------------------------------------------
-- Ej. 1. Demostrar
-- ∃x (P(x) ∨ Q(x)) ⊢ ∃x P(x) ∨ ∃x Q(x)
-- ----------------------------------------------------
-- 1ª demostración
example
(h1 : ∃x, P x ∨ Q x)
: (∃x, P x) ∨ (∃x, Q x) :=
exists.elim h1
( assume a (h2 : P a ∨ Q a),
or.elim h2
( assume h3 : P a,
have h4 : ∃x, P x, from exists.intro a h3,
show (∃x, P x) ∨ (∃x, Q x), from or.inl h4 )
( assume h6 : Q a,
have h7 : ∃x, Q x, from exists.intro a h6,
show (∃x, P x) ∨ (∃x, Q x), from or.inr h7 ))
-- 2ª demostración
example
(h1 : ∃x, P x ∨ Q x)
: (∃x, P x) ∨ (∃x, Q x) :=
exists.elim h1
( assume a (h2 : P a ∨ Q a),
or.elim h2
( assume h3 : P a,
have h4 : ∃x, P x, from ⟨a, h3⟩,
show (∃x, P x) ∨ (∃x, Q x), from or.inl h4 )
( assume h6 : Q a,
have h7 : ∃x, Q x, from ⟨a, h6⟩,
show (∃x, P x) ∨ (∃x, Q x), from or.inr h7 ))
-- 3ª demostración
example
(h1 : ∃x, P x ∨ Q x)
: (∃x, P x) ∨ (∃x, Q x) :=
exists.elim h1
( assume a (h2 : P a ∨ Q a),
or.elim h2
( assume h3 : P a,
have h4 : ∃x, P x, from ⟨a, h3⟩,
or.inl h4 )
( assume h6 : Q a,
have h7 : ∃x, Q x, from ⟨a, h6⟩,
or.inr h7 ))
-- 4ª demostración
example
(h1 : ∃x, P x ∨ Q x)
: (∃x, P x) ∨ (∃x, Q x) :=
exists.elim h1
( assume a (h2 : P a ∨ Q a),
or.elim h2
( assume h3 : P a,
or.inl ⟨a, h3⟩ )
( assume h6 : Q a,
or.inr ⟨a, h6⟩ ))
-- 5ª demostración
example
(h1 : ∃x, P x ∨ Q x)
: (∃x, P x) ∨ (∃x, Q x) :=
exists.elim h1
( assume a (h2 : P a ∨ Q a),
or.elim h2
( λ h3, or.inl ⟨a, h3⟩ )
( λ h6, or.inr ⟨a, h6⟩ ))
-- 6ª demostración
example
(h1 : ∃x, P x ∨ Q x)
: (∃x, P x) ∨ (∃x, Q x) :=
exists.elim h1
(λ a h2, h2.elim (λ h3, or.inl ⟨a, h3⟩)
(λ h6, or.inr ⟨a, h6⟩))
-- 7ª demostración
example
(h1 : ∃x, P x ∨ Q x)
: (∃x, P x) ∨ (∃x, Q x) :=
-- by library_search
exists_or_distrib.mp h1
-- 8ª demostración
example
(h1 : ∃x, P x ∨ Q x)
: (∃x, P x) ∨ (∃x, Q x) :=
match h1 with ⟨a, (h2 : P a ∨ Q a)⟩ :=
( or.elim h2
( assume h3 : P a,
have h4 : ∃x, P x, from exists.intro a h3,
show (∃x, P x) ∨ (∃x, Q x), from or.inl h4 )
( assume h6 : Q a,
have h7 : ∃x, Q x, from exists.intro a h6,
show (∃x, P x) ∨ (∃x, Q x), from or.inr h7 ))
end
-- 9ª demostración
example
(h1 : ∃x, P x ∨ Q x)
: (∃x, P x) ∨ (∃x, Q x) :=
begin
cases h1 with a h3,
cases h3 with hp hq,
{ left,
use a,
exact hp, },
{ right,
use a,
exact hq, },
end
-- 10ª demostración
example
(h1 : ∃x, P x ∨ Q x)
: (∃x, P x) ∨ (∃x, Q x) :=
begin
rcases h1 with ⟨a, hp | hq⟩,
{ left,
use a,
exact hp, },
{ right,
use a,
exact hq, },
end
-- 11ª demostración
lemma aux1
(h1 : ∃x, P x ∨ Q x)
: (∃x, P x) ∨ (∃x, Q x) :=
-- by hint
by finish
-- ----------------------------------------------------
-- Ej. 2. Demostrar
-- ∃x P(x) ∨ ∃x Q(x) ⊢ ∃x (P(x) ∨ Q(x))
-- ----------------------------------------------------
-- 1ª demostración
example
(h1 : (∃x, P x) ∨ (∃x, Q x))
: ∃x, P x ∨ Q x :=
or.elim h1
( assume h2 : ∃x, P x,
exists.elim h2
( assume a (h3 : P a),
have h4 : P a ∨ Q a, from or.inl h3,
show ∃x, P x ∨ Q x, from exists.intro a h4 ))
( assume h2 : ∃x, Q x,
exists.elim h2
( assume a (h3 : Q a),
have h4 : P a ∨ Q a, from or.inr h3,
show ∃x, P x ∨ Q x, from exists.intro a h4 ))
-- 2ª demostración
example
(h1 : (∃x, P x) ∨ (∃x, Q x))
: ∃x, P x ∨ Q x :=
h1.elim
( assume ⟨a, (h3 : P a)⟩,
have h4 : P a ∨ Q a, from or.inl h3,
show ∃x, P x ∨ Q x, from ⟨a, h4⟩ )
( assume ⟨a, (h3 : Q a)⟩,
have h4 : P a ∨ Q a, from or.inr h3,
show ∃x, P x ∨ Q x, from ⟨a, h4⟩ )
-- 3ª demostración
example
(h1 : (∃x, P x) ∨ (∃x, Q x))
: ∃x, P x ∨ Q x :=
h1.elim
( assume ⟨a, (h3 : P a)⟩,
have h4 : P a ∨ Q a, from or.inl h3,
⟨a, h4⟩ )
( assume ⟨a, (h3 : Q a)⟩,
have h4 : P a ∨ Q a, from or.inr h3,
⟨a, h4⟩ )
-- 4ª demostración
example
(h1 : (∃x, P x) ∨ (∃x, Q x))
: ∃x, P x ∨ Q x :=
h1.elim
( assume ⟨a, (h3 : P a)⟩,
⟨a, or.inl h3⟩ )
( assume ⟨a, (h3 : Q a)⟩,
⟨a, or.inr h3⟩ )
-- 5ª demostración
example
(h1 : (∃x, P x) ∨ (∃x, Q x))
: ∃x, P x ∨ Q x :=
h1.elim
(λ ⟨a, h3⟩, ⟨a, or.inl h3⟩)
(λ ⟨a, h3⟩, ⟨a, or.inr h3⟩)
-- 6ª demostración
example
(h1 : (∃x, P x) ∨ (∃x, Q x))
: ∃x, P x ∨ Q x :=
-- by library_search
exists_or_distrib.mpr h1
-- 7ª demostración
example
(h1 : (∃x, P x) ∨ (∃x, Q x))
: ∃x, P x ∨ Q x :=
begin
cases h1 with hp hq,
{ cases hp with a ha,
use a,
left,
exact ha, },
{ cases hq with x₁ hx₁,
use x₁,
right,
exact hx₁, },
end
-- 8ª demostración
example
(h1 : (∃x, P x) ∨ (∃x, Q x))
: ∃x, P x ∨ Q x :=
begin
rcases h1 with ⟨a, ha⟩ | ⟨x₁, hx₁⟩,
{ use a,
left,
exact ha, },
{ use x₁,
right,
exact hx₁, },
end
-- 9ª demostración
lemma aux2
(h1 : (∃x, P x) ∨ (∃x, Q x))
: ∃x, P x ∨ Q x :=
-- by hint
by finish
-- ----------------------------------------------------
-- Ej. 3. Demostrar
-- ∃x (P(x) ∨ Q(x)) ↔ ∃x P(x) ∨ ∃x Q(x)
-- ----------------------------------------------------
-- 1ª demostración
example :
(∃x, P x ∨ Q x) ↔ (∃x, P x) ∨ (∃x, Q x) :=
iff.intro aux1 aux2
-- 2ª demostración
example :
(∃x, P x ∨ Q x) ↔ (∃x, P x) ∨ (∃x, Q x) :=
⟨aux1, aux2⟩
-- 3ª demostración
example :
(∃x, P x ∨ Q x) ↔ (∃x, P x) ∨ (∃x, Q x) :=
-- by library_search
exists_or_distrib
end