-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPrueba_de_(A∩Bᶜ)∪B_igual_A∪B.lean
58 lines (42 loc) · 1.23 KB
/
Prueba_de_(A∩Bᶜ)∪B_igual_A∪B.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
-- Pruebas de (A ∩ Bᶜ) ∪ B = A ∪ B
-- ===============================
-- ----------------------------------------------------
-- Ej. 1. Demostrar
-- (A ∩ Bᶜ) ∪ B = A ∪ B
-- ----------------------------------------------------
import data.set
open set
variable U : Type
variables A B C : set U
-- 1ª demostración
-- ===============
example : (A ∩ Bᶜ) ∪ B = A ∪ B :=
calc
(A ∩ Bᶜ) ∪ B = (A ∪ B) ∩ (Bᶜ ∪ B) : by rw union_distrib_right
... = (A ∪ B) ∩ univ : by rw compl_union_self
... = A ∪ B : by rw inter_univ
example : (A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C) :=
-- by library_search
union_distrib_right A B C
example : Bᶜ ∪ B = univ :=
-- by library_search
compl_union_self B
example : A ∩ univ = A :=
-- by library_search
inter_univ A
-- 2ª demostración
-- ===============
example : (A ∩ Bᶜ) ∪ B = A ∪ B :=
begin
rw union_distrib_right,
rw compl_union_self,
rw inter_univ,
end
-- 3ª demostración
-- ===============
example : (A ∩ Bᶜ) ∪ B = A ∪ B :=
by rw [union_distrib_right, compl_union_self, inter_univ]
-- 4ª demostración
-- ===============
example : (A ∩ Bᶜ) ∪ B = A ∪ B :=
by simp [union_distrib_right]