-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPruebas_de_diff(A,B)⊆A.lean
78 lines (61 loc) · 1.26 KB
/
Pruebas_de_diff(A,B)⊆A.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
-- Diferencia de conjuntos: A \ B ⊆ A
-- ==================================
-- ----------------------------------------------------
-- Ej. 1. Demostrar
-- A \ B ⊆ A
-- ----------------------------------------------------
import data.set
variable U : Type
variables A B : set U
variable x : U
open set
-- #reduce (A \ B)
-- #reduce x ∈ A \ B
-- 1ª demostración
example : A \ B ⊆ A :=
begin
intros x h,
simp at h,
exact h.left,
end
-- 2ª demostración
example : A \ B ⊆ A :=
begin
intros x h,
exact h.left,
end
-- 3ª demostración
example : A \ B ⊆ A :=
assume x,
assume h : x ∈ A \ B,
show x ∈ A, from h.left
-- 4ª demostración
example : A \ B ⊆ A :=
assume x,
assume h : x ∈ A \ B,
and.left h
-- 5ª demostración
example : A \ B ⊆ A :=
assume x,
λ h, and.left h
-- 6ª demostración
example : A \ B ⊆ A :=
assume x, and.left
-- 7ª demostración
example : A \ B ⊆ A :=
λ _, and.left
-- 8ª demostración
example : A \ B ⊆ A :=
-- by library_search
diff_subset A B
-- 9ª demostración
example : A \ B ⊆ A :=
assume x,
assume h : x ∈ A \ B,
show x ∈ A, from mem_of_mem_diff h
-- 10ª demostración
example : A \ B ⊆ A :=
λ _, mem_of_mem_diff
-- 11ª demostración
example : A \ B ⊆ A :=
by finish [subset_def]