-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPruebas_de_diff(A,B)⊆Bᶜ.lean
65 lines (51 loc) · 1.13 KB
/
Pruebas_de_diff(A,B)⊆Bᶜ.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
-- Complementario de un conjunto: Pruebas de A \ B ⊆ Bᶜ
-- ====================================================
-- ----------------------------------------------------
-- Ej. 1. Demostrar
-- A \ B ⊆ Bᶜ
-- ----------------------------------------------------
import data.set
variable {U : Type}
variables A B : set U
variable x : U
open set
-- #reduce x ∈ Bᶜ
-- #reduce Bᶜ
-- 1ª demostración
example : A \ B ⊆ Bᶜ :=
begin
intros x h,
simp at *,
exact h.right,
end
-- 2ª demostración
example : A \ B ⊆ Bᶜ :=
begin
intros x h,
exact h.right,
end
-- 3ª demostración
example : A \ B ⊆ Bᶜ :=
assume x,
assume h1 : x ∈ A \ B,
have h2 : x ∉ B, from and.right h1,
show x ∈ Bᶜ, from h2
-- 4ª demostración
example : A \ B ⊆ Bᶜ :=
assume x,
assume h1 : x ∈ A \ B,
show x ∈ Bᶜ, from and.right h1
-- 5ª demostración
example : A \ B ⊆ Bᶜ :=
assume x,
λ h1, and.right h1
-- 6ª demostración
example : A \ B ⊆ Bᶜ :=
assume x,
and.right
-- 7ª demostración
example : A \ B ⊆ Bᶜ :=
λ _, and.right
-- 8ª demostración
example : A \ B ⊆ Bᶜ :=
λ _, not_mem_of_mem_diff