-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathldr2hdr.py
81 lines (58 loc) · 2.18 KB
/
ldr2hdr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import tensorflow as tf
import numpy as np
from scipy.misc import imresize, imread
from glob import glob
import os
import OpenEXR
import Imath
from ldr2hdr_loader import LDR2HDR_Loader
'''This model takes [128, 64, 128, 3] data as input'''
im_height = 64
im_width = 128
batch_size = 128
class LDR2HDR(object):
def __init__(self, sess=None):
self.im_height = 64
self.im_width = 128
self.batch_size = 128
self.sess = sess
if self.sess is None:
self.sess = tf.Session(config=tf.ConfigProto(log_device_placement=False))
self.model_path = './model_DomainAdapt' # Try the finetune model to get best performance on thetaS images
self.fname_model = self._locateModel(self.model_path)
self._load()
def _locateModel(self, path):
matafiles = glob(os.path.join(path, '*.meta'))
return matafiles[-1]
def _load(self):
'''load the model with TF backend'''
self.model = LDR2HDR_Loader(self.sess)
self.model.load_tf_model(self.fname_model)
def setData(fname=''):
# load ldr image, resize it to feed the our model
im = imresize(imread(fname), [im_height, im_width]).astype('float32') / 255.
ims = np.repeat(np.reshape(im, [1, im_height, im_width, 3]), batch_size, 0)
return ims
def writeHDR(arr, outfilename):
'''write HDR image using OpenEXR'''
# Convert to strings
R, G, B = [x.astype('float16').tostring() for x in [arr[:, :, 0], arr[:, :, 1], arr[:, :, 2]]]
HEADER = OpenEXR.Header(im_width, im_height)
half_chan = Imath.Channel(Imath.PixelType(Imath.PixelType.HALF))
HEADER['channels'] = dict([(c, half_chan) for c in "RGB"])
out = OpenEXR.OutputFile(outfilename, HEADER)
out.writePixels({'R': R, 'G': G, 'B': B})
out.close()
def demo():
'''predicting the HDR from a single LDR'''
# define the LDR2HDR model
ldr2hdr = LDR2HDR()
# format the input
ims = setData(fname='./examples/pano_axyfcrnwsmlvpu.jpg')
# prediction
preds, _ = ldr2hdr.model.forward(ims)
pred = np.reshape(preds[0, ...], [64, 128, 3])
# write HDR image in .exr format
writeHDR(pred, 'pred.exr')
if __name__ == '__main__':
demo()