-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnewtonRaphsonSecant.nb
1739 lines (1658 loc) · 73.7 KB
/
newtonRaphsonSecant.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 73583, 1731]
NotebookOptionsPosition[ 67311, 1568]
NotebookOutlinePosition[ 67683, 1584]
CellTagsIndexPosition[ 67640, 1581]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Jacob Russell", "Title",
CellChangeTimes->{{3.726832064703437*^9,
3.72683207073604*^9}},ExpressionUUID->"86e39abb-50b9-413f-b0c6-\
c72420155ad2"],
Cell["Numerical Analysis", "Section",
CellChangeTimes->{{3.726832075600527*^9,
3.7268320793128977`*^9}},ExpressionUUID->"edf461a1-f374-45e3-b504-\
86441f25e8ce"],
Cell[CellGroupData[{
Cell["Newton Raphson and the Secant Method", "Section",
CellChangeTimes->{{3.7268320832972965`*^9,
3.7268320955225186`*^9}},ExpressionUUID->"876ecd59-6631-40cb-b3da-\
f9fbab4b554a"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"newtonRaphson", "[",
RowBox[{"f_", ",", " ", "pX_", ",", " ", "tol_", ",", " ", "max_"}],
"]"}], ":=",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"x", "=",
RowBox[{"N", "[", "pX", "]"}]}], ",", " ",
RowBox[{"k", "=", "0"}]}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"While", "[",
RowBox[{
RowBox[{
RowBox[{"k", "\[LessEqual]", "max"}], "&&",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"f", "[", "x", "]"}], "]"}], ">", "tol"}]}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"x", "=",
RowBox[{"x", "-",
RowBox[{
RowBox[{"f", "[", "x", "]"}], "/",
RowBox[{
RowBox[{"f", "'"}], "[", "x", "]"}]}]}]}], ";",
"\[IndentingNewLine]",
RowBox[{"k", "++"}], ";"}]}], "\[IndentingNewLine]", "]"}], ";",
"\[IndentingNewLine]",
RowBox[{"If", "[",
RowBox[{
RowBox[{"k", ">", "max"}], ",", " ",
RowBox[{
"Print", "[", "\"\<Maximum number of iterations exceeded.\>\"", "]"}],
",", " ",
RowBox[{"Return", "[",
RowBox[{"{",
RowBox[{"x", ",", " ",
RowBox[{"f", "[", "x", "]"}]}], "}"}], "]"}]}], "]"}], ";"}]}],
"\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.7268321066356297`*^9, 3.7268322163506002`*^9}, {
3.726832276388603*^9, 3.7268323610850725`*^9}, {3.726832437429706*^9,
3.7268324400049634`*^9}, {3.726832510797042*^9, 3.726832511821144*^9},
3.7268326924952097`*^9, {3.7268327389158516`*^9, 3.7268327395879188`*^9},
3.7268327711590757`*^9},ExpressionUUID->"de3133aa-93f9-443a-b9c3-\
f46222dea721"],
Cell[BoxData[
RowBox[{
RowBox[{"secant", "[",
RowBox[{
"f_", ",", " ", "pX1_", ",", "pX2_", ",", " ", "tol_", ",", " ", "max_"}],
"]"}], ":=",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"x1", "=",
RowBox[{"N", "[", "pX1", "]"}]}], ",", " ",
RowBox[{"x2", "=",
RowBox[{"N", "[", "pX2", "]"}]}], ",", " ",
RowBox[{"k", "=", "0"}]}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"While", "[",
RowBox[{
RowBox[{
RowBox[{"k", "\[LessEqual]", "max"}], "&&",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"f", "[", "x1", "]"}], "]"}], ">", "tol"}]}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"x1", "=",
RowBox[{"x1", "-",
RowBox[{
RowBox[{"f", "[", "x1", "]"}],
RowBox[{"(",
RowBox[{
RowBox[{"(",
RowBox[{"x1", "-", "x2"}], ")"}], "/",
RowBox[{"(",
RowBox[{
RowBox[{"f", "[", "x1", "]"}], "-",
RowBox[{"f", "[", "x2", "]"}]}], ")"}]}], ")"}]}]}]}], ";",
"\[IndentingNewLine]",
RowBox[{"k", "++"}], ";"}]}], "\[IndentingNewLine]", "]"}], ";",
"\[IndentingNewLine]",
RowBox[{"If", "[",
RowBox[{
RowBox[{"k", ">", "max"}], ",", " ",
RowBox[{
"Print", "[", "\"\<Maximum number of iterations exceeded.\>\"", "]"}],
",", " ",
RowBox[{"Return", "[",
RowBox[{"{",
RowBox[{"x1", ",", " ",
RowBox[{"f", "[", "x1", "]"}]}], "}"}], "]"}]}], "]"}], ";"}]}],
"\[IndentingNewLine]", "]"}]}]], "Input",
CellChangeTimes->{{3.726832367102674*^9, 3.7268325172136836`*^9}, {
3.7268329368246403`*^9, 3.7268329485528135`*^9}, 3.7268331454214983`*^9,
3.7268331854084964`*^9},ExpressionUUID->"fde217f7-bc27-4c92-9044-\
ba0efacfa757"],
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
SuperscriptBox["x", "2"], "-", "2"}], ",",
RowBox[{"{",
RowBox[{"x", ",", " ",
RowBox[{"-", "5"}], ",", "5"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.7268325240193644`*^9,
3.7268325873006916`*^9}},ExpressionUUID->"b0b7152d-c0ad-43fe-beb4-\
888b6ac7a8cf"],
Cell[CellGroupData[{
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.7268326037903404`*^9,
3.7268326075577173`*^9}},ExpressionUUID->"cfdcb9c4-2468-4061-b4ea-\
ec15e0b948ce"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJw1mHk41F/0xyVbCBkVSlGRrVIYhbo3QkolRaUSU/mqfJGlZK0IUd+yZitE
QmVPSM5krYhEdmUf+zJMxjDz+c3veX6/v+7zep57z7n3fe4557lXgeJscZWX
h4dHcgUPz/+OvrRjdIIgUasqKnoIgoyHvdcxupZJVDe/x/eVmGR8XOLPwodF
EjVVmEk5PkPG8vtc2M5zJOqzqLetKb1kXBEaIdQ7TKJmO0U+PPOZjIV2tm2i
fidRi/TOynHuk3GUu+3Ruwkkqty+8mUdQTJ+s8ItjUeHRNX/vBRvQ9LG/FdN
9shclKQSDRr2MSRNTGqvdnwZvoaa9C3kU/qR3diiMv6yyjcJajz5n33x+ruw
9/R+x6cD4tQTfoZyurVquPh2/PWcE2LUBxGfLXcVKePjEZbynDhRKpAe19g9
VcQmzz8dPzwhTPWallerSd+C02vvtLqdX0Utc44+P7ZeHtsERq1tzBCkjl07
fPXwsiz2s12ZLUISoK6SPvHtlvs6zLNjMxg+4KNe0CBb+p+UxJ1hccFvfvFS
Q90elDecEcUbhR0y5w1WUB3rNu+hHuDHN7RV+bs2ErCJerSc7+4yuqzzO6Oy
cgkiGryixHfOIFVPXcIpjQnJN4OeJjS2oZSeU1V3DjIgdvrExVTpBtgzuIfV
osUAeaNrv0mKjVA1tkZDQ5kBufP7D7pK/4DhhcaEYTEGKD+pkTm1tQlUJc3c
TnXPQ1liTqKldjPkGx/asuP2PHjK9o1ePNIGVTlad3vfzoFU8ucU771/gHZv
rb6JNB22XS+r9JCkgbBvznSkMB02ug6YnTWnwU5P09Te5VmIoGmNivxHg1tO
vsJefbMgsOHM+WGhERA4P9T+NmsWRNNiFR2WR2Cb1nsPyf2zEHtAwiKpcwwo
w6dzeuxm4Gl0k3C32xQE9U1RVE/PQMsx48XeN1OQ1R2y7rbxDCS6DbGKBqaA
/rPMV0JtBnIFU3VaLaaB1980NmhkGoiMx3Uu62cA7R5tOrl6GkJ0eBbWTs9A
abSy0YjVJDy62uBb+4gOQudpl1foT8LSUqeX/Ss6WMmn35dVmIRdZTqdU5/o
QM/aSjUbn4CRkj74OEUHFeomvTz/CYjLWlAyPjEHsWNSu70yxoFlq3ZFTnQe
PNAKOVHWKIBCfvwvdwZU8FH1FP+MQudMZV9yKAMkvvlZH6gaheJRxTDLZAa8
Pb38zOW/Uag528nnXceAwWsLkr+2jIKCOn9UkfxfsIiaFHpxdATaX1MUZmr+
gsZox/yu58NgPKfPdORlgvvMDpX1gcPgq7bJfbMUE4oX7l3kXB+Gf2d2HCxX
ZMJBAdWa+r3DcFu+o4F6mAkWW72eXWsZgn0yNsUdj5ngcVFWN1VkCFz+3VJl
LbUIpU3W/uu8BiA7Oao8TpIFnPbsArbtAAi6mNi2KrDAoJd3ZNBkAGTrlU8R
Giyom8oyL1g7ANdUb6uvO8GCbpElBfO8fnjvb/DuTCgLCKOEqocjfcDzOJKm
wmbBodKuVWyrXvhnz2Yk0rIE2Vmv9tXq9UJgkdPjwb4lkE5wvhYu3wvXbaOK
06eXoHVBIOJoyx94pEh5NSS8DIreVhLPWb9Bw0Ow4xhehop7DFFs0gOzKncy
atOXIYby0LFFogceCatV7SxYhmuGcvUOnd0wI1FQ5gfLIMFvFBb+bzeIPTE6
1NG2DJdColYNRHZBlrn7O09BNiz/pykQ1NsB1qNMmi2FDT+ca6/KZnWAu9Lq
Jst/2ZBqfr46260DrB4uxGh6suGIZEBgm0AHuFCPl2Q+ZkNc9E9elR3tsHJe
4OzdD2wgJ94k6u60QprLC3arAAdcMnOYa0jN8B2ujapEcUBDzCnAoPcn2O5f
vTs/gQOzrupibu9+gkC/2TGlVA646mdubTH5CWHJySt/5nHAo/Hl8RifJvCm
x/2j08CBuTE1U+36RpgabRbVXUmAe2GGTYx9IxS073vhv4qAv76K7gs8jRA6
pceXJ04AU2JzUol2A7g9kTretoGAZbIkY39SPaikr+/YrUmAQAAz2dj1K6hu
v1q/yYaAYDOPoteiX0E++PFrhcsECK2j1wm9/gIqYhZnJBwIEM4c//utqxY8
wnO08m4SIN742+yEUQ3MOpYN8wQS8DT2PCX3TzXc5a+xp4QQIElpv73Gqxq2
VN/4mPOIAClG08vm7CpILgnrXx1NgPSGauYZ6Urwvy2n3J5GQNzgQbGS/Ap4
fVjoWGwGAbLZ5Vtlj1VAP35ifOgtAXIHi4933/sM4ek3P1wqIMCwwcr0cytA
i3HI0zQqAcZ25u4BIgDR5qetKysJODxvmmSEy8HhXhnzew0BZrL7GV8zy8D0
rF1Bej0BVvZbU376lMB05/Jm+zYCQm+6hUS8L4Y70r/12joI+ORT6Wwx9QGM
QpQZWt0EbIu8fODnpSJI5zBRUS8BZ18UKEbEvgc9fv+mjn4CwjJXrrZoKgTS
ASeesUEC6JDa1WRQAGHGIeQfIwQo1c1VhHvng/q6gv3pYwScazXMOlmYB+LS
Jv0OEwRQJwY8mxRzISk/a2XhNAEj0/9Qt3zKhqNHve7qzxJwQkDoycud72Df
uoL4PDq3b2geVn+5Jgt6DWxf2zEIeGA6wlIIyIBnaS1xiX8JmLgU8jVlPh0i
9uarVC0QcOqWcqyC/Sto5DCt2pkElD76Yp/SlgonFjIUOhYJUEh10FYwfQmS
Wyoe1rAICCkR4kspTQZp/0NPkpcI+J108tXBsy/ATkxjzz/LBLyrDzc4qJcA
k42BrrJsArwXm/7gTbHwsdLAvJTLpkqSvnhFNHwfvVZnzCFg/SkLWTwYDgoG
rAHgch2xzdn/v8dQXD8Xp0gQ4HDuVabf6WCIeGg1eZvLfAWKg76y9yDHc8vv
Ii5jGbP9LKoHiMefcezn8kxs3JXZOArkTzKesbjswxtVbbzXFMW6sW0JLu+M
v1wrRXZGVDWn2hku/5bJmxIR90Hq6w7XNXD5lGZ7WdDBQNS5J8wxjstFHWfu
B3uHorp7Om/MubyaOr61yvopIniPBc9z94si3wRV3Y5Et4rqeB5w+ab9jdGq
qBikkViwnpfLL/epmVXnxaEdhXz1N7jnbxEdz65uSESOnHK5Cq5eAr1Za2rG
k9C0V78oP5cTz2nrXg5MQYUqznFaXH21DaNvDEimojLhq5XmXP0b1BmJl1PS
kOCmqtBz3Pjw8LwnLpe/RvZdn2Y1uPGMG5XaPWiWibwenA0nuPHf0+xOudKV
hZrsLjSUzhNwJV2r+grzHTLJS5Jf4N4f9pOov4NBOch+2x9tzxmu/vqsyPzQ
XPTla/DI0BR3vpJ19R6ZfGT5RkopeJwAjQ3Cv11789FdGjO3dJS7Xrz0b/7r
AjRpadzRSSMgZlFGWZP8HoV/3cjbN0BAbX1HqOapYrQsUlzI18WNp2dn7Xm1
EhQjlSvi0M6tJ9u6+AJXlqJMd9WIwl8EHPHu9msp+Ii09dJ3rPpBQL3KH1cP
KUCTfSUvkrn56/jrT87zCUAm6VU3j3HzOwi7/KVQqEim4qT7QBkB2ydcNMN0
P6NtPHOCde+5/gxd33WNVaCu6JPXQtIJ2BtHr5u2qkTza52L/V5y/U+7jq2s
rERBk2I6Ni8IyIx3266eUIXWpP6qaOfWo7FZ9xSfozWoZru/VFkA13/y7Wi5
t19R9jODZL3zBOj/XSjYLf0NmTx5QKuyJEDUzPOnUeA3dOb3ERsdc24+LHiK
O12oQ333L3S2HSJg6rjXw3LR7yhyKEFUcAcBxX7l5TnkH8hjTdi5TYscSM7k
fC9x/IEe352L1aVzIKTlQE/lyx9IzuS3IB7nwFlVWGoTa0KvOnXdBXo4sPgL
9vLQmtDpDRLB94ADujs+55s/a0YaK9WiNe5yQLulNab8azOiWVcXO3ly+433
hJf6cjPKUNnOiXXhgNLX9YZCdi3IVP3gVJ4tB0hXnZpB9Rfiq2m4zEAcmEjc
ML+zvBU5HDVPq2CxgWa4uz1xphVVkCiDFbNs6B8zLhPe2oa2n9IzzhlhQ8de
18Dh4DYkrnPI2ayVDTUtX6RenGxH5yNzrGJz2ZAkekt79VAH6nk+4XXLjg3x
BWEy3us7UXerR9veM2yIsU5hj5h2osGgGkuaGRseZdRXV2V3Iimz8g9Ce9ng
eWirlY9nF5q+Lrjm4mo2WPj8uDUu0oPCWYS0WeEy8N5a231FphcF2IX6Gc4t
gbVt1s9irV40WXZA2XNoCfKPoK+i5r3IJ9veO7ptCSibrxUVBvUivtNrNoV+
XIKKL2VP+eZ7UXVG0+nz95cgYMMVo7SGPsR/hxP8XGQJ+D7nZw8EDCC/QiH+
FFEWXHhj8konaQA5tOzqGVtahMLo7oSw0gHkEfrNRm58Ea5cF3ioOTuAlout
bfS/LkI1yfpygM0gKt48fJwSuAhB9iukt+4bQtOkTMaxv0wQFDW/R5kaRmef
/TmX9mUBzm63ppJX0VCgoarFpfcLkGVwhRDeRkN3P4rVr3y5AMfvePoWnKOh
KbFXh1Z5L0DMcPIdvmoaemEoaCqgvgBKn2dvpieMIMPBlBdfHv4Fo1uRlLHD
YyiXV8PXiftOCOhtNXRNnUSihTmCyJgOv0uO/utZNomkMv5rF9xFB91Iaozf
r0lU86pu/af1dJgxyhoNFZxC6uWX+iZGZsHmje+T1BtTaJEyk2wXOgu6t7Z1
tWhOo0SfgqakrzOwyL+vZANlBgn13pvrcZ2C3IQgcz/6LGrInq3NLaNBHSmI
Js5DR4+E+J2K/WkwHPbAL2U1HW2qF18dYUCDjT6Bb6uU6ajqqQj5Y+0whFy4
LyRyiY7WSSRqDjUOga2cH/VZHR3VD8v3PGsbAIkkD428tDnEM+rWPB3yB5xf
XpEYtGIgjUPpaWHm9WBzPV4u+B4THXYToH7Y0ooenry1TzNxCQm9oUUYHplG
fFLRw/4sDtLdHnkvj7WE2uoezASKr8CP3l+SIVH4sKU3hRxfyYv1N2j6DfKK
YkeR8S0N1nwYaRXmCgytwZvf1MQIjPHjvutBZrkr12HvYsNT4gmC+HCyzZes
Zlnsku5YRN61Ck9dPGC2Lm0zFuXVoewcEsbqFqXQEr8FG/17Olo1UhQn2H05
vStQEUuXyDkbbRPDSfbKx9SuKOMI15BwjTZxnJ09tDM6Ww1bBJ3Y8bxIAss2
dml8GtuJVc8HWqb5rsFvzVe1tG3ajVuHV72MtJTEHsr3+y15NXEDZeig5GYS
7maeLhDs1MJ9fK+Z0VtIOGv7jVmnfi08n+6QI6NEwiaLFaVtY1pYZnx8o8IO
EqYF6ky/W9LCV9zoC7v0SLh5v9YfRzltzAog3h07Q8LHyD5dWnbaWOmVjOzD
JyRcddDYaHJUG+8z6fohGknCp749HX9A18Zmo4nBT2NIOI+xUU5+SRvf3CHP
ePaca0+LpXBOlIzL3iv9SH9DwhWnv+T37CRjixrNoKpaEjbYUDCj4U7GVx0Y
+ofrSDj/x/qj/T5k7Cn8Ya6ugYRnlMs1oh+Q8fPjunbNv7j2Pjc+J2LIeKQV
6/cPkPChaAFiuISMWZ68c1dpJKxg51mQVkHGqzdUZY6OkXBjo9rc5Toy3nPJ
ZP3sLAlHRJ+RonWTsdGKVQ3uDK4+E42MrCEyPpv6LZDJJOHw4YcUlykyvm70
SM9nmbu/gAfWOgtk/H//Ifj//0P+B+foUV8=
"]]},
Annotation[#, "Charting`Private`Tag$7016#1"]& ]}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-5, 5}, {-1.9999994076417575`, 22.999997959183716`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.7268325831082726`*^9,
3.726832588577819*^9}},ExpressionUUID->"16ddbf9c-16c5-4ff6-8155-\
a000927cb728"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"newtonRaphson", "[",
RowBox[{
RowBox[{"Function", "[",
RowBox[{"x", ",",
RowBox[{
SuperscriptBox["x", "2"], "-", "2"}]}], "]"}], ",", "2", ",", ".001",
",", "50"}], "]"}]], "Input",
CellChangeTimes->{{3.726832594525414*^9, 3.7268326345844193`*^9}, {
3.726832700047965*^9, 3.726832700415002*^9}, {3.7268327556375237`*^9,
3.7268327559565554`*^9}, {3.7268328912510834`*^9,
3.7268328914901075`*^9}},ExpressionUUID->"a28136f5-b828-49f0-8c02-\
2c5e72c332c1"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"1.4142156862745099`", ",", "6.007304882871267`*^-6"}],
"}"}]], "Output",
CellChangeTimes->{3.7268327799229517`*^9, 3.7268328640903673`*^9,
3.7268328946414223`*^9},ExpressionUUID->"88844b6b-2350-47c4-8bbf-\
02de8e7b4b56"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"secant", "[",
RowBox[{
RowBox[{"Function", "[",
RowBox[{"x", ",",
RowBox[{
SuperscriptBox["x", "2"], "-", "2"}]}], "]"}], ",", "2", ",", "4", ",",
".001", ",", "50"}], "]"}]], "Input",
CellChangeTimes->{{3.7268329215351114`*^9, 3.72683293082204*^9}, {
3.7268329774667044`*^9,
3.726832986987656*^9}},ExpressionUUID->"2a11dc2a-a44a-47fe-bc35-\
3a1593d4cdb8"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"1.4145132110323237`", ",", "0.0008476241849750821`"}],
"}"}]], "Output",
CellChangeTimes->{3.726833149703926*^9,
3.7268331918691425`*^9},ExpressionUUID->"074f1a7c-5062-4265-a99e-\
56aa75995bf2"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["1)", "Chapter",
CellChangeTimes->{{3.726952067709983*^9,
3.7269520694602385`*^9}},ExpressionUUID->"8afd9413-9792-4e96-a245-\
c062f9adcb2f"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"motion", "[", "t_", "]"}], "=",
RowBox[{
RowBox[{"9600",
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "t"}], "/", "15"}]]}], ")"}]}], "-",
RowBox[{"480", "t"}]}]}], ";"}]], "Input",
CellChangeTimes->{{3.7269522072120123`*^9, 3.7269522495037794`*^9}, {
3.7269523916777906`*^9,
3.7269524003059063`*^9}},ExpressionUUID->"42802d8b-2cb0-4119-a068-\
ad22c3c85279"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"9600",
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "t"}], "/", "15"}]]}], ")"}]}], "-",
RowBox[{"480", "t"}]}], ",",
RowBox[{"{",
RowBox[{"t", ",",
RowBox[{"-", "1"}], ",", "10"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.726952259656212*^9, 3.726952342163121*^9}, {
3.7269524288795056`*^9,
3.7269524863327017`*^9}},ExpressionUUID->"0caf7e26-e79e-49c0-8836-\
8bb34afc3fd3"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwV1nk4lF0bAPAhW2YwM4YIoYjkDWWrvNzWkC9LEpnsWxGZ5yFFtiSpUJbK
TonIFpUk8ygiokUkIlSSvExIluQ7/TXX7zr3uc8693nkPYLsvLlJJBKZi0T6
+xvpfOrc6uo0+0NXaMy6eh/i80BLAPMzsp6+DfWmD7GXSbN72DbNZuI+rkJJ
PoTE4RJp7PI0+3P+0L8MDx+i2qW3emzjNJvimjZnL4j6u2//0Gk6xU5os6cX
OnsTFn4T6tkXJtl3ZoedjnB5EYyQQ/26676x70aWnsp1cidS6YbnSq+PsM2z
P3F2FB4k9hl2Dh/W7mHLlX+lKd/dS3idebKS9ucxG+8pljQX3EEofgx/kBj7
2GC+YImpuWU7GFVWbWwx6jF49S03e7+fBeCV9cG7lUYNAng/921atYeMLxzy
z/PfDFIMphV5M5hwRWxurlObY3AzcVR8McMdvEIntXlnZw142nhdbb56waRL
y/qaoF8GEdZcnqFNvpClneD8un/JQCJz97Ki/VE48GJP0P6UPwYLKzbM1x8D
YHQOo29ewwV1WuJymbxBkO/xxMH+EzeA063eU5eOw4/Ws8/r63lA+cJV/nV4
MMgE77zEZPFBnU1I20M1FujvnBp4eZIPsgvurZZvZ4EL1w0V4xg+0O1Y3Zuv
xYL8y5S2LSl80JCyVSFqNwsU7n7k/lXOB5PdWr2Ke1igMns27PI3PmiOuu+8
zoUF2iFvPJ+58UNtpEjThUQWWJ/036VuLQAKa1XTiEEWRHN7hSo4CECKpksr
dZgFVReYdyUOC4B0csAB11EWUHP/p8LlLwCqAVGxv8ZY8OqJ2vo38QLQUK28
icFhgR1lbhFrFIAqhQ+pf7gwcMiLePjgn7WQH0AfvKaAAbPlkq4BRRCsFiOY
414YCJir6rWJCsLcaHbtgg8Gte3tBrZSghBW5qHIfwQDoVf8ezxVBIGkd8h2
wzEMGvtjDpwzF4SAW7a9WiEYyHFCWC/jBMGrTKZy7VkMvqx3ueO6IghxGreC
TW9gcCXnd+U4Dxms2ookJYsw0JfLqgmmkMGkav3QxC0MMhT76s9IkcF8dLAh
oRQDc3W758U7yUDyleopr8ag1NRsbDqEDJzwxcQcNgaBx7fJRU+RIcKEPiza
j8HCs3iesZ9kaEhLm7gxgMEZmY/je1fIMKd+Y/P2QQyutSdXr6NQoNbu3Q6L
YQyeKvwwqtxCAZ6VuiL3MQwk3td4D3lRIGCXJUlvBoMmw51legMUoDxOPHhV
AAera5eTC0eRpyvb/1uLQ+/UN0xgggKaBlMsIzIOk1mZem8XKMBwVfIcE8JB
fH65019cCPQMbrRIiOJwtLSRk2krBNkDYWVKMjgwRE20F1uFYJJ/mT2lhkOF
yjD/cJcQ2K+pnF9Qx8HcKOL9sx4hsNkjUsC1HYeI4NqItE9CYP5GzVZYE4fP
LxWeqq0KwXhHoLyYLg61F3ltfLSFQfpJV3qfAQ72fK1Hum8Kg95dxWM6+3CY
kvHcXV8mDNkUlinVGocErVVKwV1hkIgwTPuK3OClUxVICEO0dHP6ZVscFJ4W
z6/9IAxtJa9Vuu1xmItKOAOiImAy1F1FccYhfdEipzxGBNR53NqdfHC4I3hR
e8t5EXhBH68Q8cXhiVTXy5spIuDopd32FHnqXzvu7DwRYDhcu775CA5msYd8
Ex+LAOfBlfpefxzmBf01fBdFwOqRt/DIcRz4khy8g0lU0Jx9aHUqGIcrGb80
1HioQLqf00Rj4VBSvLOjlEwFVc5Z690YDm+fP14pWE+FKuavP2EhOKgKP/NI
0aWCBGbRknsShwfivmr79KgQt8Q5KXUKByNZgd9koELYpWmfDGRHdcv0c3uo
YBXmOREfjkOcXVdrpAMVogMMM+1O4yDiHJSmd4gKjn4NjCbkTE+q+9JhKnw4
G9z2TyQOVbjdUog3FfySlwe4onAYzOhVPYZTgeNccj8tGge/vBOLKmFU+MwR
+jOHPFcs8Ww8nApuVilR+2NwEHx4yNXrDBXwBKYGORYH7YGhy85XqBDBv3W/
9xkcmj5FuUhmUCHldVLgA2SrSbmt766j/hk/mvnjcPBY8Wi2K6CCroDiphvI
SbJf5y2qqEDMO5U0n8WhQEBlV1sNFdrGi1V44tF9+RFw2uwBFRYSujcaIb9/
OrPGuBGNf1025CHy5B2tPU1NaP7jx17OIP9JD0s0aKECFP3MUzmH7offH6re
CyqYM4RupiPr2Bra17+kws2s9ndtyJa74q7qdlOBslMmdgk5iCK4Qaufiurp
4C6nBBzqq8S2bhunQsOohQHPeRw6rzsG3vmO9ltUQ2Ur8nBsVrXKNJpvgNdF
G2TeA/K6SvPoPqwlP8hAltD3Ci9apMIc6U7UA2QVpeLGTStUSEucY/ci2yyq
msrx0EC94l0xNREHz9GghFx+5Jk8663IoR13O6TJNJCW9g8yQU6o/SmcJUyD
OyvW/EzkrBxdO0k6ivf1XsdCrogPT78qRoMSpSd58chEUGOfmCQN+iin868j
dztySadJ00Dg0x3JMuQxQxNXuhwN/EL8yI+QF1XOFaZsosG1S89CniNTGO1f
hJVowJkddOxF3rBC2XJJBbUHtdSOIGuMWQeQt6Hxn6We/45s8vJK5XkNGtg0
uL6bRXao65nh16LBOANyl5CPFEhox+ui+VzeO7SKHJHofJJHjwbHZ69dXXMB
h2QstyHWALUv6LfzIhcyR1ZJxqi/q30oH3KtqYJxlBkNJL5MZ/1tb93mG79i
QYNoY+Xdf/v3ryt9Hv4/NF9Nhv3f/JOk/yhLNihfcPvYIvLqNzWbMHs0/2r3
2Rlkejcrdf4gDYZvc05OICs23OvFndF6RJJODSPrFi1Izrqg8dNsfr5Ftkza
fTjYgwZtk/smWpEPn4jMn/amgWNrntND5ONuTZ+OHUHjdzsZ30aOteBRmgxA
6yNSi68il0gllo9jyBMjH4OQH/F0cnxOoPM4vanWCbnrPxHNL6fQ+jIN1hgh
z7LT60diULyIB10Yme9234rrWXRed9Pf/Ph7v65IGQ4l0EA55I/QW2R9r4LW
/mQakEaez6cig45h+J5UdB/0C+1ZyEaCI9tqM1C+ZYV/rZHNquQyLuXQ4FV7
ZMXf+21+hrBYyqdBXWi0ziC6/5YObis+N1H+2pi9tcj/+53nBWUoXqCP4YK8
76WBRHkFDVIqD7arI9sUfuyQvIv2k0+VzI1sby67Y7aOBgt9Smr56P/FTMvl
uvUMnYcRm7sD/V9dfPXv0dtpkF+hI3YF2W3XkF9UJw2quipqDiJ7Dcu8cnyL
9mfdVNoQqg8Bqjm55FG0Pg73935UP8Kbs3YHr6DzooguXEL1KOLq7ulBEh3c
nvi+/Rc58uhAoSUPHQSshPUnUf2KpUoJKpDpIHei6KEJciIzs69Xgg7j2lb2
n1E9zJy7FqKnSQfHhl9bhiJwyG7V3XJbhw51ObZfQpFzM/s+iO2mQ5ietZow
ciFImEwb0sGcOzFIF9Xj2xev0gutUf7cvTfCUT2vU8io5Penw0LW0YkGVO/D
5gRaGwPpYPNV6vUOZN3m8KEQFh2uTRXz3cZRvKe70OeTdOBgj1yS0HtRV6jq
TyTQIeVNY4sJel8eyD3dfPIWHdp2FMW7BaD6wNHSVy+lg25Zim8Dep+0iZID
X8vpEK2y5ro48n3XpLgD9+jQJzn+Xwt6z+7nOo1qNKP92JfjQUXv3X1pTs7E
CJqfFiXZ3h3lm/S4V/AFjb9tIi7dDeVr6Hnh+A2t7+3ii7euKN750fIzDsqf
KmG/zwU5M97pxiran1Q9w3/Qe3tfQkaMKSMK45UuFZnoPb7HsLzY6SgKfffv
XdI0w+F3s8t6UyZq/0BytzFF9SIEK2lwFYWqF8PEURP0PvZkN5f5oPih2s1Z
RjjMZEz/Po+jeCbfpQl9HNQl04+ZpYgCqIi8M9bBoVRmeB+7VRQSAk7ND29G
8Z1zH7Q7RGGhtv9slyIOOyPX+ld0iUK+WMTNegUc2oa2n8vpEYUwh3fJSRtx
+Jp3lh3+SRTURU3kFTeg92LjVnXdVVF45ZBmKCSGQ97mUFq1NgP6Ihsp7Vw4
3Ow+vAbbxQD16cYngSQ0frTpT019BkSHPmynrWJwv5/xvs6UAcqRAq/tfmPw
Iqkmn7BnQBWJVE/MY7A0z1F7xWIAPBlgWH1H37ut/vumKxjg56dYKt+NAcXP
/cI/SmKga3ZKtSsHA67Vov8GVcRg+KpfDDUbg/n0CeukbWJQcsFa3zYTg+Gn
GGNaSwzqyv05nRkY1MjG51SZiEHV20zd2mQMDr0rrdzhIQaENztQMwaDErO5
7p05YrCQuFmexxMDY8Vz0mai4jB++CJtTB4DIvvYz/vi4qC82YFrXBYDPYZ9
l9J6cVi4lpw6LoOB9hr56LXy4lBXWpD3RRID5ZH6Ty+2iYMcC3N8SUPzz5kq
3W8pDn3+ti7u6Hu+h+Gw0z1GHGwq3ptFf2SBL4+iQ8S0OJgLHB8rv8oCYdHY
uL1D64BKS/3B+hYMN4wPOus+loAUmqeapXowcHF8LJquSoL6IT7DZe/jMNqh
pfopbj3A6c/t3F8Dofp5xIONHlKQz7JpFF8IAO5fsTrLttLwyvqy1a/qo2Bo
xuX2Q0MGqNLfErf7+YElrT7vjNAGSBGcTZni9oFe8va3FcsboOrh+5h6fU+w
Vt5Y/eu9LESfi3y8HOMGivV+TQHeckAyvn7rNfsQCOQO3isbkIP8oBLJDmN7
GL2SFLloIQ/RJ19FPO3bC6dl85pSm+SBJKIndWtqF4g8/t6np7ERSG68g8q2
P9jx13qWa3KRH4nNvcn9l2CTZa+fENsEJNnKdbaj+4ip5JuClnGbIFpRYVJD
5yBh+sF5VDd+E0D5pX+iDx0kspVF65USUPya8ILu0wcJy6aYI7wXUbx+omxi
80GieMaljUhF3intr2XnSLgdkIzXuYHiA1V+xgU6Ed3rk7gUn2wCInQmkrfM
mVDxNX0v2ozyx6r6L3Y5E7E1v6u4nyFT9aNmZpwJdSt/t+HnqP+1VJm5XUzi
4mlzdtZrlL+/YYtWB5MwG+Y+TR9B7QqNWhWTh4kc1Xp7rk/It/NPzFFdiLmw
YFXOZ5SvhfLBQMuFKKQND3SOo/58auSx0y7EqtHjXec5KJ7ttBgk4ko4JOP0
sBnkMTOzjztciYqBrRM+c2i+9RI1+x1dCSaeed1kAdlV4vveAleihrAN3rGE
rJNz72WLKyEotNZi4280XkdtruOEK+HuRMjR/qD2A7z7MX43oq7oxMLq6ibI
1yn60iDpRvwfzfNqRQ==
"]]},
Annotation[#, "Charting`Private`Tag$10890#1"]& ]}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-1, 10}, {-181.81536935047814`, 328.68907769163934`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.7269522833742623`*^9, 3.7269523437598743`*^9}, {
3.726952411790819*^9, 3.7269524197446747`*^9}, {3.7269524612632275`*^9,
3.7269524868638654`*^9}},ExpressionUUID->"b47bb0a4-5f50-44f1-8e48-\
5a0c02cc8984"]
}, Open ]],
Cell[CellGroupData[{
Cell["a)", "Section",
CellChangeTimes->{{3.7269530167679586`*^9,
3.7269530177993264`*^9}},ExpressionUUID->"3e1ef87e-7837-45a8-82cb-\
d1b5b3b380c6"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"newtonRaphson", "[",
RowBox[{
RowBox[{"Function", "[",
RowBox[{"t", ",",
RowBox[{"motion", "[", "t", "]"}]}], "]"}], ",", " ", "8", ",", " ",
".001", ",", " ", "100"}], "]"}]], "Input",
CellChangeTimes->{{3.7269528975344343`*^9, 3.7269529146835566`*^9}, {
3.7269530786363363`*^9,
3.7269530926463795`*^9}},ExpressionUUID->"4fce86f5-5f2c-4ff5-b75d-\
50509e5a85f7"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"9.087899911339202`", ",",
RowBox[{"-", "0.000031729191505291965`"}]}], "}"}]], "Output",
CellChangeTimes->{{3.726952916418147*^9, 3.726952924404207*^9},
3.7269530935681567`*^9},ExpressionUUID->"89e0dc4d-9cfe-43a5-9b31-\
ed091458dad2"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"secant", "[",
RowBox[{
RowBox[{"Function", "[",
RowBox[{"t", ",",
RowBox[{"motion", "[", "t", "]"}]}], "]"}], ",", "7", ",", "8", ",",
".001", ",", "100"}], "]"}]], "Input",
CellChangeTimes->{{3.7269529286490374`*^9, 3.7269529610271425`*^9}, {
3.7269530998972883`*^9,
3.726953103239843*^9}},ExpressionUUID->"5c21c845-f21c-4e85-9db5-\
aeebc46b2ebb"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"9.087894829331287`", ",", "0.0006330621663437341`"}],
"}"}]], "Output",
CellChangeTimes->{{3.7269529498420124`*^9, 3.7269529622927275`*^9},
3.7269531047710714`*^9},ExpressionUUID->"fa4c7c9c-f89d-47cc-b543-\
4b9d7e784179"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["b)", "Section",
CellChangeTimes->{{3.726952999386668*^9,
3.726953022232023*^9}},ExpressionUUID->"895c4e29-9487-40f5-bfe3-\
33344b7a9ab1"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"range", "[", "q_", "]"}], "=",
RowBox[{"2400",
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "q"}], "/", "15"}]]}], ")"}]}]}], ";"}]], "Input",
CellChangeTimes->{{3.7269531653318534`*^9,
3.7269532226766944`*^9}},ExpressionUUID->"8c223b82-5995-4fc1-b426-\
5941e6178dca"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"range", "[", "9.087894829331287`", "]"}]], "Input",
CellChangeTimes->{{3.726953207398059*^9,
3.7269532276324625`*^9}},ExpressionUUID->"19d6d56f-0e17-4e6d-81b5-\
235ca61a133b"],
Cell[BoxData["1090.547537785296`"], "Output",
CellChangeTimes->{
3.726953230289007*^9},ExpressionUUID->"435f65a7-6000-44a4-9da1-\
491f7b8ecd70"]
}, Open ]]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["2)", "Chapter",
CellChangeTimes->{{3.7269532368405313`*^9,
3.726953237215525*^9}},ExpressionUUID->"2bc0697a-97a4-4090-8357-\
bf96adb31bbb"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"poly", "[", "p_", "]"}], "=",
RowBox[{
RowBox[{"2",
SuperscriptBox["x", "6"]}], "+",
RowBox[{"5",
SuperscriptBox["x", "5"]}], "-",
RowBox[{"3",
SuperscriptBox["x", "4"]}], "+",
RowBox[{"2",
SuperscriptBox["x", "3"]}], "-",
RowBox[{"6",
SuperscriptBox["x", "2"]}], "-",
RowBox[{"5", "x"}], "-", "4"}]}], ";"}]], "Input",
CellChangeTimes->{{3.726953244140026*^9,
3.7269532979982805`*^9}},ExpressionUUID->"60f3a35c-dc65-4c3e-ae78-\
d22565426fe0"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"2",
SuperscriptBox["x", "6"]}], "+",
RowBox[{"5",
SuperscriptBox["x", "5"]}], "-",
RowBox[{"3",
SuperscriptBox["x", "4"]}], "+",
RowBox[{"2",
SuperscriptBox["x", "3"]}], "-",
RowBox[{"6",
SuperscriptBox["x", "2"]}], "-",
RowBox[{"5", "x"}], "-", "4"}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "4"}], ",", "4"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.726953306189995*^9, 3.726953451633844*^9}, {
3.7269535023405905`*^9, 3.726953566867981*^9}, {3.726953809630335*^9,
3.7269538213450084`*^9}},ExpressionUUID->"6fda85f1-6fdc-44f3-804c-\
7367c8a368ba"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVV3c8lt8bFu/78tpkJdkhCdkjnlNZEWUko2S+DSMkq0RIomSlQrKSJhmR
5Lm/QhLZRGTvvVfxe3//PM/n+pzz3Pd1Xec+93OOiONVMxdaGhqadurj/29Z
jGdyZ4cNqksuPdq5kI6ubohFbmyygcWnN/wp+ukov/CwxNIKG7j3aiqdlktH
ClLGjqNTbOChp/aaZfs5UuUI767vZIPwF+dO6mPPERpaqHuaxwYVXIOdXD+e
IbO7DW8UL7CB0ruifib6FJRw9PeJQzZscHdf3OS5nmTUtjU+JnGGDRyUfpr3
fEhGlp4EcX4jNnj2syPf5XwysrXWTKVRZYOmonexaR+fIueDr+43sLKB5bgq
wz2vJ8ivMdz9YgUrDDBE7dFjSEL3p3w7l0tZ4fVDvc7tvkcok/7y0dBCVsh8
0dI2XvII1WPG3M9yWUGw0KP/1KVHSDSf+0tLPCtshFr4ufxIRD9jc5i1L7JC
/qPhycjkBCRhVvuGi50VGpwYiyNt49ARjzLuTEZW4P+6p4RHPQ6ZRr0NliOy
glH3zeImnjh0szLW3HCTBaT2/yTWtsSiFgXrreBhFtCvMojFT8aioN2ThlOl
LFBdwLVjFxeD2tqYJv9zYAGzOndzOjwK3XYurnhzjgUOqZwvdIqMQrLLdgmP
zrLAuvVBCwazKBS5u+DIZWMWKPA9Sdk3eg9pmVk9ZFdngcOFx1U8Oe6hnMZs
pQvsLBD++JZxuM9d5F+nFfy3ghnOqDqh+ivhaL/NmPnoJ2bwOVSveexIOGqZ
iJVqKmIGJ04H2RWWcCRDHm7Oes0MCWMeezgKwtCAfpS4URIzXLF/ssD/LxQZ
Vnd8f+rODJGNltf00m6jfXCVS1WAGUrXSh4SeG+hek5lHw1eZjjnvjw2/D0I
BbpstmpxMsP662cRh4KCUAfjnQQdBmaIWajjXB2+iWLPJHOaLTNBpcSldutP
NxDdVBW7ez0TxL3abcB3PQBNcPOzZN1kgg3JdbxP+Tp6cqnPLcePCfIbYmw5
VnyQ3ufs+lfeTFCtGhX7vMgHZdrL3c+/xAT9PESHJiUfdO6NDlOFBRMUvfAd
CFC/hhrRVXKXDBMEowqT5+ZeqNi1isjWywiVN5Lx93GuSE3Y43BOJyPMXL/t
9UPAFZW18Z7XamEEAeMbn3JzryDQci1y/cYIEYW21RmVl1EdG6dT7QdGWN9H
ovPbuYj6Cy/A7QhG2DD5V7OR4owY/24GLssxwqXJPsHPxefQg/zsnGhpRmCK
Cf5O2LBF7C4mLaL7GWE7kfbuMy1bxP0z44ApPyPwfXis97HOGgmnG/x6R2CE
Gyo/XW2XLZGyTpLyxS4y7M4zzpMJN0X29w/Pd4WS4UiB27EcOW0UWBQf0RBE
Bm9RwsV5miPoUc+SwH/+ZCg9H9BysEMd1cl8PJHrQQa124JLzveVkWKDRpav
DRkYWvNj6k2kEYlVx3K3AhkgZ+Es0YEehFVeTJMOkcHKk95ewm83aNqRwjYl
yRD7rf0zr9xe8Hxfmzewjww9UcEHE9T3Q5eJMTmfTIZI7+LDXrsV4O1Dy/KT
Awzw2yTPwP0ggpqSEjPUwwCzUcyf2+iPwkAf34RiJwNsC31Ljxg8Cjzyv7n3
NjCA1TdGvDn+OAQ3Xbg6UcoA5zj5vxzp0wMzjsuiEbEMoLbo5SJwwBjW429E
4hgDONx1GVLUt4Axgf8m9TQYIPyWE8t2pgV05JCMfyoxwPnPpwWm/llAYVkc
R+8BBvgnHh2i8OEMeAy+TN7czQCf4MypJJazMHS47a3yOD38ljSWep9mDS2f
97B9GaSHAPs0c9kZawDdC146vfQQ6VVtMqRhA2nWk8rmLfRQajLMPN9qA1a3
aXDPcnp42GrcU/DXFn42yTS/iaUHgblR7foDdlBu462oGE0PFhLclXvc7ODN
cMmjsjvU8aAB0rt3dhC5fszmeyA9uLXdm8+VvQDHha2HRp2p+Ta4L5K57KH0
6p0VEXV6OKlzf+vbX3t4uVF39pUiPVjFvXC15nOApDD2MnlZeriYJvPlkaID
XHuccgsTo4er8RnL7JcdQBb/QH+ehR7s7+fLCDU5QBbrnz1PBkhQQGtFJD50
hHhbjF69hwQ5jMQo7heOEJqbvtzVQYLB32cMfpc5guMxp8a99SSYTr8pEzni
CKK+4+HPP5LARv5q0jVVJ+D8esIbfSDBJ8fsWXUjJ6Blf3Nh4A0JGBaUpkrt
nGDwlbuGWAYJYrwlggfDnSCzd3EuJ5oEPyOPl881OEG8tEWvfgQJjrnzDUf0
OUGoX3HdeAgJOl4H7OqedwJHDv8X0r4kaL6686WY0xlEdP/ZvLcnweY13lgT
c2dIf0tfU6xMAk6uK0N2tc4Qu3Gp0FKeBCS5ff4j7c4QoleXviZNArqjdDay
Q85g33//hrowCbiDVh8w/HMGIS7Ow18YqflNLM5PHHIBVodrgnZEEqQOCREf
qLvA9rs2pp0dIhjmBe1a1XGBP/qPR9EKEdL2PvDZY+sCaTcEUqv6iDDzO+tx
frgLxNQG3XPpJsLwwDGNezEucIu7z5fUToQ2grCI9BMXsMvLMDWoI8K//YEy
Na9dYN+QBH19ERHeuxRpejW4ALN85LJbHhFkozsJSe0u8PfmxADLayJIP86a
vNPrAj08b8tPPSeCGfmZV+20C6QaHvZuvUcEpZckoUEGCogzGdY1hRMhIEoN
Nlkp8OaHo+jPYCK0kEu+jHFRoOxkYkvtdSI8OJA7iglT4BjLO+kaTyKks288
e7OfAnUN1aFfXYnQdNX8+7Q0hbq/1xQqHIiAXf4XO69EAXs29ujP54iwl4ez
pFCdAuONUkOlZ4lg+77M2VibAuunbRIKjYnwpdbnIlGfAjzmX5Zy1YmQkfvD
86ElBdJ2dxjlKBGB/16cJqsNBfa3zWZlyREhUSw21+U8BZTOCFuk7SfCbNJr
r+dOFCjnVn+bIkyEp4fPm4ZSKHC8w5TwdC8RJix9u7UvU8DsbFhRAgcRjjWj
GV0PCnTzpjLHMRPh6oGw9VhPCjj8KnKOoSdCzQWT/I/eVL5PGsqjaYngb1dn
UeJDAU/rUa57/wigz9e3P8GXyn/PjlvEOgEY8pScDP0pENLNWx22RICcp4on
ewMowJAiv+/2LAFe1BGET96gwEPbE9dvTRBApiNu3+ObVL0Cjg03hglgxXcn
rCKIqrcncH9AHwFO/j4RW3mLAhLPEoJ8uwmgEsQcmhVMgffn37ZfayfA46Sy
JIcQCqgIVh/yaiLAshAd8z8q/vKn947HDwLQPLEU8r1NAZ3nq72uNQSIPzDG
0kDF9RfYVC7/RwDH5lwu2lAKWAhLxVDKCbAQZurJTcW/+9GoUwkBjptbn6en
YscMa22HAgIMJW7y/qJ+P+ngnWT3jgCi9Ao9d6nYWzR61jaXAHJrFSM8VLwx
mKVnnUWAKIqY5x0qn5Cs8jTLNAIkyWd/bKXyZ3BuXzV/SgAO+RPLu6g4VnzW
xDSRAIPOvU7sVL28I6SXJg8JwLdnDtuh+pP2QmjHKIoA9aSmyp9U/yQoamdP
3CHA/qBHEsGBVD8kTPP0QgjQeIfvBTvVb5Wxy/Q6NwhgxLjqF+ZHAd1LKSXa
XgQQcmWgYaWuX71UEdsRNwJcrzWSlKCur8VE/UX1iwSomyHdFaauv/OVbV6l
8wRAUteay10pMC3N63nYigBtUWdlLlDr59qUXK2sOQGkk/nTh6n1Ferm4H/g
BAHSjfbmP3WgwJ8Yu9Sy4wQ4Pe5XHG1HAY0PtmCkTQAXt6xv52wpsLhyhsFD
kQBKkn5Szyyo9RZs+KRgH3X9bvx1TtOl1m+GfvlxPgJM3563jT1KAb4qnf42
TgK0JpWEOWlRoIkBk1qjJ0Dtxh+v99T9heIVSzUX6eDZF2PmPyIUSC2S76mf
poP6qxWN/QLU+uw4RGM3RgeFtWZtNbwUyN8rZRDSQwdKGyeztFgoIPRC4FdV
DR3EhsRY9a5S+1cJcd04hQ6aw9gkBapdwKabVqDvER0MhdK/9KxwgY9/dzDP
WDrQULE59bbEBTyObt6Nv0MHI5bZDN2vXKC3bpa38yoddIU3JnM/cIHy3k5V
ex06oBhxqKJTLnCD7rWf9wwtlOqyXZ/+6gweT+1I9uO04EsMU1b67AyOcrsf
GQ/RQhwH4zm3AmcwtL1ZINVFCxXWpbffpzsDX6HJzJ8qWljuOfrh1k1nKHJc
cjRKpYWLAXRk78POMPvfERNxI1pwLPzvQ3GcEziENIp35O4CLlGNpFRFR3j0
ZeRJ6hUaqLqkxXH0jh2U9UkxvxXdxrtiupRcWaxAjB0ds0jbwqvQSecCfzOI
kR8IvJJAxYYb37cczKj9KrQwJHILl/+47GxuZAb1cVXi77y3cKlVgcBDgmbg
s/sEPUl/Cy93IjTFVJlCDY9ZfcncJl5n9W+Gk8sUruxzttx7dBMXaPjut37z
FBRIR14ZHFrHP0aZnuOOMAShZvtPB7vW8dOCs4vSDoZw30+d4frPdbzidtET
+yOG4FI1+YL+0zrOLt8jJ7N0AvjsjAdkYtZxwVX/U7qOJyAojtPKT20db4tP
DAnXMwCD9VRd5gdrOLk/btFUUg+K064nngldw7Pax355k/RAVNdkKM1vDU/J
mNAsGtGFrbidkMOOa3jL6BefJ9m68P6gY7ml6hp+oV0zZlRMF7guSCpmDKzi
lo2ldx5L6UBf9QdhFZVVnHd4n5qC4TG4ab6hoyazihvUDNgZyx0DvgF0WUN0
FX+45GYRznUMTv9t/KDNuorzaPol6PYdBVCYPaY/uoJHMre85/I9CunPpV2s
klbw00f2m/flInAMyHoVuLqMl42fcP2jqw3bpKmGm9PLuM4bmfIpHm1ITlRY
vDW4jHffPpctO64FLXn/aYT9XMZ9lHMmLKK14Pho34/onGW8yLWQINJ2BMTN
BWZTLZdxjTNW+dlXNWFE5pEC/nEJn1qn/pca1ED61ovZ8TdLuJzmh9HhDDXw
aCx+zZmxhFfFaIWf9FWDda8OUUr0Ep70KpT0U0gNGEt4d7PYL+GzE1yuSddV
Qf5o8pINeQl3GUnbIyijAjfOPC9atV3EWX9qviNXKVLPzXmewqaL+BMO/L3T
c0UgrOMyhnqLeG/Ldv5yoCLEJPdnP5NfxKX7qvg+KyhCep/IIx3iIv73ZiZX
e7YC1FzOvh7/fgFPZXx5lD/hMHDceqUiu2sBr1Pr7npwSA4iPkrVsq/N4+yB
dyQdV2Rhc/al9dL0PP4huOzIgy+yMHgh52bpr3mcm2KXNWoiCwVHsyqP5c/j
M7t2Z6ZdPwRmxGcmZy/M4/pcYUwjLQdBco9IA82NObz/zlpta50UsEcJzVdT
5vDeO2Imq6lSsL65b3e02Rx+Mlz8KeWqFNT28FtzS8/huvqLtnLcUnApnWvk
QNcsHlXeGWftLAmvJRn+manO4mmaprFN7BIgozIn82JpGu/SNSvRSxcDimxw
8Kfeafxw0Nx/d/zF4LkEW0vDt2lcO3HtNLepGHDyyvmtpkzjlJymu+J0YrC2
5vGfvs40fiTaTmbjiihUfpo9M5k4hau9IIhLnxCBvx9u5W7fmsL/Jb2c05UQ
AeXXrFucl6fwIxFu19/SiUBusmy6ptYUfupzDmaFC8ODGx6T90cm8bzS1Bph
DWGw0pq9JacyiUsOkXyMAgUhXvlW83HhSVxjf0xiuJYg/DjEKm7FOInnDvZX
6+8SBG1B2e8hfybwxNG/UZej9oHYjvvulogJXPTW1g4pSwBmYealT+c4vnJt
+jnLDD+E6cw0ffIfw4VWrYZu9PFCpcH0KSWnMdyn4XmCZyEv0BhP/XxvPIY3
8+YZtd/lhZtnJuqzRMfwRDR2ZvowL/hSRmof1I/i0eKrN7FoHrgU2QsOwqN4
asbz7/Om3JBzvwfrYRzFp4J2JFJluGE49neF5coI7sthWfuOnhscnnaVG9WN
4Pc5vK/vwrnA5nV7qbLPCN5aqDthrcAFJ+sb8sm1w7iZ+V69kwd3Q1RTvVx4
wTD+5DOHNzfzbqht+/F+O3UYn8tJSNCc4QTd3u9vl7yGcYuqMZ/UfE7Qnq3O
7d07jEcXn/6XrskJ8uwV6R+uDuH3CwIwdUcO8OD6IiRjM4TnHdrmeGjAAW/5
ytNydIbwXq1AFnU5DjggUpaasmcIN1X6Z3f3HzuIKnx8cufrIN5El567/Ywd
uC3ex1rzDuKnP9EKf/vNBgUS0WW6dIP4y72smprFbHB64+Lw4bkBXNWq8I7i
QzaIShNRY/w2gE+WG3m+02GD7fHEvjLfATzyWbl6fjErpHz2Ir90HMDtjt64
IpfACmoxJooJJgO4Ttmwh4wXK3grMtx1lRjAXzh+ak+VZYXRoBuyAh39uDRs
hB7NY4Gw01ZWDJX9+G1t64KnsSwgLKYcuvyuHweHqfjL3ixgUzvbXn+nH0/z
KL7orsoCPzkdg4KU+/HlpOyE+Rpm8DgV9+TLgT4c0zqVfHSLCXKXDacf7erD
07sma8qHmGDwKQF5dP3BzfbysWfXM4HlsN+Y4L0/uL9QsmLRcybAAuxUQsZ7
cf8cQuI3QyYIFOSLsoJe3DSHci1WhQmKvjb3yj/pxe0FP23jokwgxap7Z0C/
F09R+ul9+i8jsGcdbDv2sgev+CoYIF7ECIYGI5J7g3vwkiP11uxZjBA+k3Zj
ybIH9+I/VXA+nhHWVTnFskk9eNHv1mP83owwUL/uRaT8xhNSRS6QVRhBwLug
ulfrN75uzH99TpIRLHnd9nzk/o1vu71iUuBnhDqHPqBUd+PlPfSmdTtkKFit
ZqsVp2KblIcqjWSIeZ1Zqb3RhYtrGI/RfCWDq13w9eKGLtxb6oadQgkZxGvU
fmf6duGyBSP4t3Qy0ARyx+wx6sKfJpapSieRoffQIooV6sI/9GpOzkeTIenR
m5yg2l94Gf2cVK4/GbxPRFovp/7Cd1kg48dXyXDqnzOzq9cv/HvYzZ4xChkY
XAS9rfh/4YHbFwNfW5JhmG9LvHG2E/fRLD249xQZ/qvv7NT92omHVSo9mNQn
Q6BSnJaiWyd+ov98UaYGGSzH3edfoU7cnne/ZJQSGRRTDbOEuTtxATXj7AZZ
MrCflrR8PNGBD0i+vON2gAzTdAQya0UHznrRVIIiTobakv7P4fEdeEN+yeAn
ITK8cP3isUXpwC8lxfNd3EuGUKFkEW/NDlySZ0zCnZcMdq2+beNsHXjFIZLH
j91k0LhrfvfCcDuuc+n+qdvsZODVlNfoKG3HX110kI1hIcPyLPPMyQft+M/L
JR4LjGRoypx4/tWhHWf9zuj7moEMby1rzDRU2nEXf5E3pSQy3GPMIn5gbMd5
bzD67iWSgVIRXCrZ14YPnN2HWujIcMz7nGtaYRsOdzeu9dCSQVBCXZA7sg2X
7b8TpE7FW13czdHn2nC6jbnv47vI8OvBYhjt4Ta87sGbbxNUXHS0USWA2Ia/
7fYa1aTOj115MzHX1YoPL6PHf6jY/VVkKuV9K14uaHuymZrP8LzLqd7QVnw3
r17AbiofCY5jtBZnW3Ef57r4bCpf2mrB4rqDrXh+yiJrOFVPn//WxaM0rTgp
k9HlA1Vvucwv/tK2FrxtMo1FhurHk/6iBtlXVJx/I3SJjQw+iXEhL4Ja8BHp
t9r0VD9NDTwUBcxacOvygAoKDxkY8yWfkrea8fyE4zT0gmQYdSKcDGlsxmcX
d/2nJ0qGr7wD26tZzXhxb9+xJgky3AxOdh4+2Yx/k9v1qEKeDFaKfry2Is34
ike7u6gKGZTHzOuaV5rwQ/QTfD81yTBrwiKPpzXhbC9OELao9VVHOzmofK0J
F933y/KGCRlefqx59Fa/Cd/XIJF+9AwZ4AjNmuJAI15JKTZIc6LWy++RBxPh
P3EO9dGH0WFk6L7J8/yZ4k+8Ert+KZm6H1gF9fNNBxvw9VoD9aEEMvja57Z8
whrwRdHMyyIvyKA3coU3avMHTr2r4np11PqOSJHSfvUDv9cuyyrQRob3kvXq
i2d/4Pyy70uk/lDr68qhczbFdXhXnFvP6CIZxmfn0qU9v+PwPX5sRpDaD2KF
C/4Ifsd9gj6HXJdmhNOHTb/GN9TieU8+sShQ+0XptYKRTela/O6bR30GJoxw
b91H+sdIDZ6WvufxSAgjSNNuFrraVuGGD949fT7HCHZZ0tVCjFX4x/PGs2e2
GSFex7ajtfQrfpthh6DFwgSbEeXrmjxfcbbpU3dTDzLBD6ZgLebm/3CGHnvP
5CtM8EuaIcb6QQWuGSdfYb/ABOdNBYp+OxXhKEzzUKEwC0wvrahfryrEq19H
nStUYoGbSY046/5CvOMZr1ePAQuk/g79cXT0Ay7aOvox14sFin60VJ9qfo+3
x6U07K9mgbxlN7Hx7mzc/qd7fOI1Vghpk2rb+/U8Hu+b4OU5wwYybL1XiId0
sIfrvhmSdOzQsRD6nH39EobET2e9YmOHGwl6da5KIRjPn06dESl2+Cp87+4z
9nhMLzWkVv0cO1y8KE35uJ2JzYo6JZvUsMMnxhvtldcLsSSeH+eGX3JA+iHu
1jzRIuy/lpvSrSUcEHE6rym1sQgzvWzi2/GNAyyShn74HviIjaKIC/zjHDAv
crJSurcUo62E80kHOEFCfV9evE4FRjsaZ2pJ/Z9/L7yg8+FeFTbcKUGfX78b
lAd3Cd62asSS82bvm2jzgGzZ2QX5V42Y9q2X+7JMeUAi/l1V/0Yjxjd7pYbk
wgNMGW+V042bMPciC8Et6nnl72mrnp3ZJix8+whjUjcP9ObnHcAPt2BGwbat
4YG88NzTrkqrpA3jbs5jKKziA7H5zxsalV3Y1bwzpro398LNhuPhyzNd2ClL
/qBbiXuh4/UP1vd7urFbsx8ewdu9EOXyW0zEqxtbjDJ6ZNe7F+a7N43phX9j
I78vNWxqC0BFtXpma1AP5na7MN+fbh/YpJQYuqn3Ye92RwX4PBSEIn+sfb9L
HzZnOVShnSsIrJbfLvTF9mHZNKu7Gf4ThP/YO33Mxvswqd8mF5IWBYHr+I1T
qUb9mPzPYyeTzgjBjdLkgNDNfmxB7E2xI4swnMjqajCxGsTuGl3gNW0Uhvk7
7ynV7oPYk5fzcbt+C8OTS2E7mmGDWEaVKPZ6VBjGDx06fOD9IPZT7yjv0D9h
iCwNSaQjDGG3BvW7Jg+KQG2DpG1p3hDGWrZcyh4hAp75f5dkq4ewacGwOJE4
EeBLaL7/onsIexbP2rI/VQQuWd2oiCcOY3H9Fer0BSLAMPRTxN12GCNtB6qI
94qA/vr1cRH6Eexg58FL/vKiMNttePuJwAh23d/MIElDFJK+CPGzKYxgUfqP
ezN0RGE09LvR33MjWAJbwpMQK1GIYNmX11Ewglk9a5U1DRaFGtGq69F2oxit
ZL/LYK0oeBCfstL6jGL2qv6Fr5tFgWfc/aX/vVFMwsZwl023KFDe8Xa5FI1i
x24n1LlOiQJJzfUIYhzDNFU82E4xi4GuMSfdSvEYxk6nfTPXQAxiHMgLG9/H
MP7hG2ryp8Tg13Wavu3eMaxXI/ZqyhkxuJI2W8ZAGsfGSkaS+B2p8+fqvAUs
x7EMjrT4vAAx6KSrtBe5Mo75nrZa1gsWA2G+TyYSt8ax2P1NJyrCxaAQvZSW
zxnHFJjMNw0fUuPHhQ0eXx3H3JqeOzVmioFITmCTAeME9rRjxdb6JTVfmVeF
seAEJpFiGIa/EYO/gxeSz+pNYNdaii8LFlH5r1lGnrOZwJ7b5R7kKaXyYTLx
dfCYwNyPnxId/0yNp3TEzDVpAiviUM/l+0qNZ6CIPF9PYHRtkgq+NWJQdE5a
9nrFBJZFKzz65rsY/PMUEQhsmcBqaf5of6oXA707fIzBoxPYpWccH581isHD
p2zrYZsTWP9/56qsWqj835FGI1knsWkhs4GJNmr8juX/4lUmsRgDBeH7XVS9
k1N5jw0nsY8+kwdTf1P5bw8+S7WbxKqWh/eE9FL57+6OzvCexA7fsjin2kfl
L9kckBMxifklWjj/10/1U7P24pvkScxUYTxj3yDVz9P4mfz3k5iJ93qY0RA1
n/PH48WV1Pgq5v6Gw9R8/u8Ol3VQ4ze9mtozQs13P1sIn5zE5F4+PPGJivUy
Uliqticxjh7/v5KjVD3F8Vu1nFPY7sVSdxcq/vX93kSDxBS25nmb6EXFIn9C
Ols0pjCPe/3ShlR8ZdGvutNkCjMuxY/PU+MVkq4W9jhOYaTLg0WO/8/HT8kY
8J3CQh8PD6RT+ejKnX84GjWFaXqpH3pN5Rtz3CJoKm0K+75yYD2IqufXWSPX
+YIpLDepNXPvADWf2zHrlZopzKxD4n4o1Y8rIer6m91TGD46wlFA9asoUV55
Z3YKE9fPin1F9fNfrqQYgW4a43YAp0tUv/W+CHKQeaexeXG3kZkOqr5m7h2W
g9NY2osMD3Xq+vwaYZ7hxKaxt4USZw2bqfk26X7zmk9jBX5RK0I/qflYt2oF
Lk5jTMzizz/VUfWJLn4UuTGNTXFz5PJ8o+pTmciWeDiNVZxXclKh1tPDC50h
8iXTWCopUPlzmRhETB/BRuunMUYit1lpsRjcCsj8lzI4jXmUBNBfyRcDjwT3
QHrWGUwnTezlWDb1fi7cqvZFbAYbjDxR+SFNDOzeqa15q89g9sarnTJPxMDk
G53PH+cZzABTPKoQRdVncVkhMXAGG3H3KSkLFQPtgZ/zJ2JnsNgDye7zgWIg
u/XUvfjzDBZOFv9x4YoYsMrJX7zPOYt5UOiQoq4YkMof7T8mNYsJ5DV/ZNQU
g22DraE1rVlMq289/a68GMw61tg7XZ7FVK5VV7vzi8HPpHM2GjCLPei9m/1z
gtp/xCr55ttnMevLdjzFPaJQkS/Z+WJqFjO22vmo1igK7+sWzTl457D9il+1
dheKQsx2pPG4+xy2lHWFbu06tZ9FzzKlhc1hJHe1lFwXUbjFZ1Fn/nQO4zzR
nD5rQe1nCkL6eNUcxq266aGoIAqShTbCP1jmsdve19aDx0QgK+DBzgu+eeyn
6+xMUasICCH4EyI2j4UN6LBdx0WAt2H/MxX1eezSdQOW+EciQD82vyfTeR7T
uqNMv++ICIS9E9u4eXUeWzibEXhPXAR2rln+Ohs4j52o9DPzYxaBNZryJJbY
eewRC1mspVsYxvjv7g74PI9lcdr42XsJwzeTfSynORewggFWax+yEHDJDvB4
Cyxgw+ZFnLENgmDP8kI4UWIBk9f6ZPc6VhA2f8go/dJYwN760sU27xYEmRNH
bO2dFrDQ3Hl4xbIP/KVoXELdF7Cbs+YPA74LQDV9lUe23wLm/1fFSjlcAOxq
jELHoxcwCfbIExdX90LscdtXnkXU+QeY5jwb+KFHVKgwvmIBE792cu5cCD8c
oB0qL6pdwNg5lFxFFPihEq40rfcsYCa4b9OB+D2wohW4FkJcxFYFHlstHOcD
G7WnunGWi1joNSY5XjduyOE9f6rQfhFzu6rhbcnEDUurwtbtVxaxiNP3HXVe
ccH94ly3PcGLWA+P7ymRgd2AK5QmZLxcxOYzDdLiECeIH+oc+LC+iA3XTZIz
/VjAkzllqpV2CctPF/hmdo8ZvkzZrawwL2E6Z1PsiU+o9+3XowwaIkvY/RYV
aau3ZIiUXJWrPLGEpbfvMWHMJ8KMCPetlmQqng644n5kE1e7keH1X/YS1nTZ
z/AzcR0PbTvkkv9+CWM3dqS/V7uC89zVOxlTuYSFuJC6vTUWcO1pP37DySUM
eepei1Hrwx9+7P74n/oy1q9h9Vzr7TjWzXbxdf7xZSy9lIvp+soMJn556dlz
42UsP8WjMzNnASvdy3wnyGEZC9FCn2O41rD+EC1z9XvL2LxEwjOJ/bvQYaP0
ufxfyxjqWFsv5mJBN7Nlhp4PLmPCsyHbKdmsqOZfaUfM9DJWez04xkiAHdnk
N39xo1nBDHJHa3w+cqBQbrr7UlIrWOmgTP0IHTdq7XORSvdbwTydTz8MJQmg
6z4HHR7yrGLiJ9VcGgf3Ix7GuXJLkVXsb4TuTLWvBCp9XsAnKEMdz2ROVWeW
RH/r1JveHl3FFDKGZLM0pVCoiAFW57aK1WnzKv54K41ifjrvI35dxe7HrPt2
d8sheWepgPqGVYzD0SFj9bg8at6Yakv4tYoVH+0ds0iRR1z7r90XnV3FtqcU
xh+dPIySb9zewvasYfPuVp1mnxRQjlRaV+DVNUy1eSmI/osyMqhwUD4WuIbJ
6ggaxImooAnz/XHkO2uY6+l3rAx3VZBM8FuDJ8lrWGyofVelhSoqaC8rKa5e
w4aFftU93VJDFaGdj+b3rmNuIwefq/gfQZ097GaU2nXsP2u/x1cFjiHDaJdf
Pi3r2OKOpWm6zTFUrl5mF9azjqWdjH1x6ukxlJ7k5Jo+v45d/P2Q4xDfcXTp
9Mfwbr4NjEa1onVtrw7a/GpbYnJ5A7P8mHvb94gecvPO1zp/bQN7X9kvNxWq
h/4IE6tcgzawUvN7Lye/66HKoPdNkXEbmE6Fx94H1vooWnXXZOWnDexgdfV5
32ADJPAmR0CVcROT2HE7+XDUEMVYb2Xqcm1i5lK36ThUjBANw+kDFoKb2FCj
VIR0hBEadt5Q9lLYxAxLr56UkjqJ3gmePPXGZhP7xTSaTrlmjLTjF24LvdnE
ir6nF3TuPo3sA46M0Z/cop4n+ttbSeZI2rm2fdZyC2PVbw8Q1zJHSyYWVe0O
W5jOl+1DfdfMUYS4W0aW3xbmnZ6u/GjQHL1tTLHFsrawbcbDM1zVFmhj/1aj
7+YWxvClLWA2zRLFt3wqHcn9i1Fm+0sjX9ugc190X9YX/sXse8w8zszZoP25
zY8KK/5iBs5t0+lKtqg0aML7dttfjC+umlwCtuiP1J5D+2j+Yb++rRgt/TmH
pIP9MyzO/sNk9ljcM1S6gL4eVI36StzGhClCqt/EHJGdnEXWAts2lhs60jFv
5IjWFbzKhfi3sfJO0rqtjyOS0Xgze0N2G7MIxwnr1Y4o0UDIXOnsNiaUta5z
2s0JUVzoBV7kbmMVvR+O1FU7I4bnne8ijHaw7l3+bhrvL6LMzOWaojM7mNOA
5m/VvovoSA5H/+CFHawyKC7mNvsl5PnOiBPz2cG+qKTIbV27hLo+475rqTvY
h2uyLnHal9HrXy+xS7M72AQ3WkkevIIkyOXj2QY0KC0xklhxyQMtfpO9kmlM
gyiVfreaMj1QRUTG1HMzGqTEVFOv2uuBLAl3Z5PP0SD+9m8XSeZX0Z0d0+VY
Txo0cFyf9ayIJxpeGdu5+YQGpZB0z2rv8UKZg7t5z4zTIGOB8QOXDl5DHhkR
T8xmaFCmCuG4oMk1pGG/sef0IjXegj0z0esaaun9I2D0lwaBp0GYS8k1tKvr
lehR9l1oo2+5xU/PB9k3YrKH1HahmqOZLBwe19G+clddYuQuVJB9yPLxsB/i
2rO56fFgF9IvXxIw5vBHzL6R+b/idyGpssdWOtr+6K/ci71vn+1CrqoMVutP
/FF31p8Fs8JdSPIPTe4t0wCUFG2alv5nF3K3zuvRawxErLaqa5rKtOhPfSPH
yE4QIpVWv32hQYvUtP6p2infQv+4LBzZEC16rTXxWNT1Fpr+6dkwaEgdXww2
iem8heqOvc66Z0+LlPHSl5uFweiu9L7TndG0iLX5P5XSLyGIZpP2lfcgLfro
qp6SmBWK7Ie6loLHaJF13d+bqv+FIqjP134wTYuysx+27vwJRSHP7dpertKi
GK9h7117w9COTtlODyMdWum6HFWfGIa2H3pZ6ivSoVc6qquZD8PR3/39dALh
dIiei1PkfFYEOsdWYnLgHh1iZi89tF4dgcrXHzxViaFDeC/37S/jEejmD005
0yd0aMAw4Nk32btoy/OxTcRbOnRHIWnfn/K7aPOzyYf5NjoUK+UrqDYQidZM
v9hV7yegKLcTktVG0Si0K69X+yABWUYIZVv5RSNWh8xzpfIEpDIYsi6WFY0k
PO/avNEkIAoHA4PTVjSyiDG1jDMloFb2A9OR7++j/LoR4/NBBGQbfj7jhVAM
unycVWuljYBEPeS4zj+ORct1NOUe3QQ0feeSUE9+LAoxW9IY7yMgOMGFB9bF
oicOv9R+TxLQeUV/Fd7tWFQTnKn0Hw0RqeUecmmixCHRchWZBzJEdCU8h+GC
djz6rXRh7/5wIjrLxCxXT0pElA1ltjv3iMgxRZ95XiwRzX9hphuJIaKwXXFK
KkcTEUG/bDL7KREVLu4eOXAzEclac5eJ5xFR/23aYwVLiSgk6IeVeDcRZVcx
cDlNPEISNapJYvIkdCLvQa/0/GOUH8UaFaZMQu5550Q6OZ4gjVMjQUMaJJTh
o9P0SvEJOvUr3iVLl4Q0ldQ3Kv2eIP/JGSUxWxJC4R+O1u56in6wZreKRpDQ
D/NFfa19ycjzLDuHaA8JvcrV+1rnnYocc+WS9w+QkLzsV6eZpFR0ZsNE7MAo
Cb2wDrBU/pyKNFIeKMvPk9AX29k3yoRniNjHaKNNoEfS0gFuW4+foWQKMctG
hh5tp3HKfKxJQ1XXN5USbtIj2VefOwfS09HHmj0VSbfp0TPZ6POU4nT0ildd
PzmCHt1OvR228z0dxXzys86IpUdHrNUXri6lI+t/y0F52fQoqExPyEg/A82G
z9X8qKdHMifm0cZiBtqTOGxF2MeAmtfEPV/bZCG1MCEeH1EGlG15KKrrWhay
9LZpHZJkQJ+dhRzFHmSh+NNNxl8VGJD7JeMX9JCFmFnKj4UaMKBNQuEsl2Q2
2r6TIEPjw4AM/S5esdzMRsN+x2j+1jGgoreTDTwfcxDtxaAvrk0MKMGrnaWu
JQcJW5YG/m5nQJKpvYvJcznovJLsSlk/A/pzcZI56cBL1DG/ZzJglQE1BmVJ
Lae9RN8vL7SuiZDR0nmym8vDXPTeNv3lkj8Z0X9TTKq7+xopdYptkm6RkY+a
xknVnNfos9nLk/xhZISsf8VB1WtUe+L9AnpARqPP7gkfoH2DhlTLNWMyyCjT
kvm5xa03qGnVz94DyGi3IznsLPYW/Q8VRV7g
"]]},
Annotation[#, "Charting`Private`Tag$28260#1"]& ]}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-4, 4}, {-180.06511703415848`, 3615.670921605322}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.726953334123336*^9, {3.7269533762238617`*^9, 3.726953452185978*^9}, {
3.726953503574926*^9, 3.7269535190191517`*^9}, {3.7269535534625363`*^9,
3.726953567414817*^9}, {3.7269538174169674`*^9,
3.7269538216888*^9}},ExpressionUUID->"e8355b6f-3f0e-456e-be5e-\
3f2d9bc813e2"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"newtonRaphson", "[",
RowBox[{
RowBox[{"Function", "[",
RowBox[{"x", ",",
RowBox[{
RowBox[{"2",
SuperscriptBox["x", "6"]}], "+",
RowBox[{"5",
SuperscriptBox["x", "5"]}], "-",
RowBox[{"3",
SuperscriptBox["x", "4"]}], "+",
RowBox[{"2",
SuperscriptBox["x", "3"]}], "-",
RowBox[{"6",
SuperscriptBox["x", "2"]}], "-",
RowBox[{"5", "x"}], "-", "4"}]}], "]"}], ",",
RowBox[{"-", "4"}], ",", ".001", ",", "100"}], "]"}]], "Input",
CellChangeTimes->{{3.726953603638237*^9, 3.7269536714165373`*^9}, {
3.7269537089282317`*^9,