-
Notifications
You must be signed in to change notification settings - Fork 113
/
Copy pathfind_max_rsrs.py
174 lines (140 loc) · 7.91 KB
/
find_max_rsrs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import numpy as np
import matplotlib.pyplot as plt
from easyquant.quotation import use_quotation
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
import pandas as pd
import datetime
quotation = use_quotation('tushare')
date = pd.to_datetime(datetime.date.today())
if date.dayofweek + 1 in [6, 7]: # 剔除周末的日期,避免混淆
date = date - datetime.timedelta(date.dayofweek - 4)
max_score = 0
def get_ols(x, y):
slope, intercept = np.polyfit(x, y, 1)
r2 = 1 - (sum((y - (slope * x + intercept)) ** 2) / ((len(y) - 1) * np.var(y, ddof=1)))
return intercept, slope, r2
def get_zscore(slope_series):
mean = np.mean(slope_series)
std = np.std(slope_series)
return (slope_series[-1] - mean) / std
def get_rsrs_score(stock_code, days=60, slop_days=18, M=400, MA=10, buy_score=0.7, sail_score=-1.4, use_ma=1):
# m + n + days
data = quotation.get_bars(stock_code, M + slop_days + days,
fields=['close', 'high', 'low'],
end_dt=date)
data['ma'] = data.close.rolling(MA).mean()
# M+days
ols_data = [get_ols(data.low[i:i + slop_days], data.high[i:i + slop_days]) for i in range(M + days)]
slope_series = [ols_data[i][1] for i in range(M + days)]
r2 = [ols_data[i][2] for i in range(M + days)]
result = []
signal = []
position = 0 # 是否持仓,持仓:1,不持仓:0
last_rsrs_score = 0
last_ma = data.ma[M - 1]
# > -1.2 持仓
# 最近的N天
for i in range(days):
current_ma = data.ma[M + i]
close = data.close[M + i]
rsrs_score = get_zscore(slope_series[i:M + i]) * r2[M + i]
# M 天序列
result.append(rsrs_score)
signal.append(position)
if rsrs_score < sail_score:
position = 0
# 10日线拐头
elif rsrs_score > buy_score:
if use_ma == 0 or (use_ma == 1 and current_ma > last_ma):
position = 1
last_rsrs_score = rsrs_score
last_ma = current_ma
return result, slope_series[-days:], signal, data.close[-days:].values
def get_max_args(stock_code, days, slop_days=18, M=400, MA=10, buy_score=0.7, sail_score=-1.4, use_ma=0):
(rsrs_score, slopes, signal, close) = get_rsrs_score(stock_code, days, slop_days, M,
MA, buy_score, sail_score, use_ma)
df = pd.DataFrame(rsrs_score, columns=['rsrs_score'])
df['slopes'] = slopes
df['signal'] = signal
df['close'] = close
df["策略"] = (1 + df.close.pct_change(1).fillna(0) * signal).cumprod()
df["基准"] = df['close'] / df['close'][0]
print("slop_days=%s, M=%s, MA=%s,buy_score = %s, sail_score = %s use_ma:%s 基准收益率: %s 收益率: %s" % (slop_days, M,
MA,
buy_score,
sail_score,
use_ma,
df["基准"].values[-1],
df["策略"].values[
-1]))
if df["策略"].values[-1] > df["基准"].values[-1]:
fig, axes = plt.subplots(2, 1, sharex=True, figsize=(18, 12))
df[['策略', '基准', 'signal']].plot(ax=axes[0], grid=True, title='收益', figsize=(20, 10))
df.rsrs_score.plot(ax=axes[1], title='rsrs_score', grid=True)
plt.savefig('slop_days%s_M%s_MA%s_buy_score%s_sail_score%s_usema%s.png' % (slop_days, M, MA, buy_score,
sail_score, use_ma))
return df["策略"].values[-1]
M = 600
slop_days = 18
days = 600
data = quotation.get_bars('002230', M + slop_days + days,
fields=['close', 'high', 'low'],
end_dt=date)
# data['ma'] = data.close.rolling(20).mean()
# for i in range(M):
# HS300.loc[i, 'beta_norm'] = (HS300.loc[i, 'beta'] - HS300.loc[:i - 1, 'beta'].mean()) / HS300.loc[:i - 1,
# 'beta'].std()
# M+days
ols_data = [get_ols(data.low[i:i + slop_days], data.high[i:i + slop_days]) for i in range(len(data))]
slope_series = [ols_data[i][1] for i in range(M + days)]
r2 = [ols_data[i][2] for i in range(M + days)]
# 斜率直方图
plt.figure(figsize=(15,5))
plt.hist(slope_series, bins= 100, range= None, weights= None, cumulative= False,
bottom= None, histtype= 'bar', align= 'mid', orientation= 'vertical', rwidth= None, log= False, color= 'r',
label='直方图', stacked= False)
plt.show()
# slop_days=17, M=200, MA=0,buy_score = 0.9, sail_score = -1.3 use_ma:0 收益率: 2.2461242244347384
# slop_days=10, M=200, MA=10,buy_score = 1.0, sail_score = -1.2 基准收益率: 1.6168427594779367 收益率: 2.257659818289085
# slop_days=10, M=200, MA=10,buy_score = 0.9, sail_score = -1.2
# slop_days=10, M=250, MA=1,buy_score = 0.6, sail_score = -1.5 use_ma:0 基准收益率: 1.3719224724986905 收益率: 1.3719224724986916
get_max_args('002230', 600, 10, 250, 1, 0.9, -1.5, 0)
# slop_days=17, M=200, MA=1,buy_score = 1.0, sail_score = -1.4 use_ma:0 基准收益率: 1.652887346165983 收益率: 2.3299197792940176
# slop_days=17, M=200, MA=1,buy_score = 1.0, sail_score = -1.3 use_ma:0 基准收益率: 1.652887346165983 收益率: 2.4466786338581996
# get_max_args('002230', 600, 10, 200, 1, 1.0, -1.3, 0)
# slop_days=17, M=200, MA=1,buy_score = 0.9, sail_score = -1.3 use_ma:0 基准收益率: 1.652887346165983 收益率: 2.2461242244347384
# get_max_args('002230', 600, 10, 200, 10, 1.0, -1.2, 1)
# # get_max_args('002230', 600, 10, 200, 10, 0.9, -1.2, 1)
# get_max_args('002230', 240, 17, 200, 1, 0.9, -1.0, 0)
# get_max_args('002230', 240, 17, 200, 1, 1.0, -1.3, 0)
# get_max_args('002230', 240, 17, 200, 1, 0.9, -1.4, 0)
# get_max_args('002230', 240, 17, 200, 5, 1.0, -1.3, 1)
# get_max_args('002230', 240, 17, 200, 10, 1.0, -1.3, 1)
# get_max_args('002230', 240, 17, 200, 12, 1.0, -1.3, 1)
# get_max_args('002230', 240, 17, 200, 14, 1.0, -1.3, 1)
# get_max_args('002230', 240, 17, 200, 20, 1.0, -1.3, 1)
# get_max_args('002230', 240, 17, 200, 17, 1.0, -1.3, 1)
#
# 4*4*3*7*8 = 2688
# for slop_days in [10, 15, 17]:
# for M in [200, 250, 300, 400]:
# for buy_score in [0.6, 0.7, 0.9, 1.0]:
# for sail_score in [-1.0, -1.2, -1.2, -1.3, -1.4, -1.5]:
# for use_ma in [0, 1]:
# if use_ma:
# for MA in [10, 15, 20]:
# score = get_max_args('002230', 600, slop_days, M, MA, buy_score, sail_score, use_ma)
# if score > max_score:
# max_score = score
# print("当前最大值slop_days=%s, M=%s, MA=%s,buy_score = %s, sail_score = %s,use_ma:%s 收益率: "
# "%s" % (
# slop_days, M, MA, buy_score, sail_score, use_ma, max_score))
# else:
# score = get_max_args('002230', 600, slop_days, M, 1, buy_score, sail_score, use_ma)
# if score > max_score:
# max_score = score
# print("当前最大值slop_days=%s, M=%s, MA=%s,buy_score = %s, sail_score = %s use_ma:0 收益率: %s" % (
# slop_days, M, 0, buy_score, sail_score, max_score))
#
# print(max_score)