-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfcu.ino
238 lines (183 loc) · 5.19 KB
/
fcu.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
#include <SparkFunMPU9250-DMP.h>
#include <BasicLinearAlgebra.h>
#include <MadgwickAHRS.h>
#include "config.h"
// Flash storage (for nv storage on ATSAMD21)
#include <FlashStorage.h>
using namespace BLA;
MPU9250_DMP imu; // Create an instance of the MPU9250_DMP class
Madgwick filter;
uint32_t lastBlink = 0;
void blinkLED()
{
static bool ledState = false;
digitalWrite(HW_LED_PIN, ledState);
ledState = !ledState;
}
// to be used for gains and trimming
// FlashStorage(flashLogRate, unsigned short);
Matrix<4,4> W;
void setup()
{
// Initialize LED, interrupt input, and serial port.
initHardware();
// invert thrust matrix
computeThrustMixer();
// Initialize the MPU-9250. Should return true on success:
if ( !initIMU() )
{
LOG_PORT.println("Error connecting to MPU-9250");
while (1) ;
}
filter.begin(CONTROL_FREQ);
}
Matrix<3,3> J = {
JXX, 0, 0,
0, JYY, 0,
0, 0, JZZ
};
// m x'' + kOm x' + kR x = 0;
Matrix<1,1> kR = {K};
Matrix<1,1> kOm = {sqrt(4*MASS*K)};
Matrix<3,1> unhat(Matrix<3,3> M) {
Matrix<3,1> v = {
-M(1,2), M(0,2), -M(0,1)
};
return v;
}
Matrix<3,3> hat(Matrix<3,1> v) {
Matrix<3,3> M = {
0, -v(2), v(1),
v(2), 0, -v(0),
-v(1), v(0), 0
};
return M;
}
float norm(Matrix<3,1> v) {
return sqrt(v(0) * v(0) + v(1) * v(1) + v(2) * v(2));
}
void loop()
{
// control loop frequency regulator
static uint32_t lastUpdate = 0;
uint32_t now = micros();
if (now - lastUpdate < CONTROL_DT) {
return;
}
lastUpdate = now;
// LED heartbeat
if(now - lastBlink > BLINK_RATE) {
blinkLED();
lastBlink = now;
}
if ( !imu.fifoAvailable() )
return; // no sensor data available
// read new data from buffer
if ( imu.dmpUpdateFifo() != INV_SUCCESS )
return; // If that fails (uh, oh), return to top
// convert sensor readings to SI units
float ax = imu.calcAccel(imu.ax);
float ay = imu.calcAccel(imu.ay);
float az = imu.calcAccel(imu.az);
float gx = imu.calcGyro(imu.gx) * 0.0174533f;
float gy = imu.calcGyro(imu.gy) * 0.0174533f;
float gz = imu.calcGyro(imu.gz) * 0.0174533f;
// estimate orientation
filter.updateIMU(gx, gy, gz, ax, ay, az);
Matrix<3,1> Om = {gx, gy, gz};
float qw = filter.qw();
float qx = filter.qx();
float qy = filter.qy();
float qz = filter.qz();
Matrix<3,3> R = {
1 - 2*qy*qy - 2*qz*qz, 2*qx*qy - 2*qz*qw, 2*qx*qz + 2*qy*qw,
2*qx*qy + 2*qz*qw, 1 - 2*qx*qx - 2*qz*qz, 2*qy*qz - 2*qx*qw,
2*qx*qz - 2*qy*qw, 2*qy*qz + 2*qx*qw, 1 - 2*qx*qx - 2*qy*qy
};
// TODO : get desired orientations from RX/TX
Matrix<3,3> Rc = {
1, 0, 0,
0, 1, 0,
0, 0, 1
};
Matrix<3,1> Omc = {0,0,0};
Matrix<3,1> Omc_dot = {0,0,0};
double f = 9.81*MASS;
// TODO: trimming
// Compute errors
Matrix<3,1> eR = unhat((~Rc)*R - (~R)*Rc)*Matrix<1,1>(.5);
Matrix<3,1> eOm = Om - (~R)*Rc*Omc;
// Compute control inputs
Matrix<3,1> M = - eR*kR - eOm*kOm + hat(Om)*J*Om - J*(hat(Om)*(~R)*Rc*Omc - (~R)*Rc*Omc_dot);
Matrix<4,1> u = {f,M(0),M(1),M(2)};
Matrix<4,1> wsq = W*u;
Matrix<4,1> w;
for(int i = 0; i < 4; i++) {
if(wsq(i) > 0) {
w(i) = sqrt(wsq(i));
} else {
w(i) = 0;
}
}
// TODO : voltage compensation and monitoring
// TODO : motor control
// Print estimation and control data
LOG_PORT.print("Orientation:\t");
for(int r = 0; r < 3; r++) {
for(int c = 0; c < 3; c++) {
LOG_PORT.print(R(r,c));
LOG_PORT.print("\t");
}
}
for(int i = 0; i < 3; i++) {
LOG_PORT.print(Om(i));
LOG_PORT.print("\t");
}
LOG_PORT << M(0) << '\t' << M(1) << '\t' << M(2) << '\t';
// LOG_PORT << u(0) << '\t' << u(1) << '\t' << u(2) << '\t' << u(3) << '\t';
// LOG_PORT << wsq(0) << '\t' << wsq(1) << '\t' << wsq(2) << '\t' << wsq(3) << '\t';
// LOG_PORT << w(0) << '\t' << w(1) << '\t' << w(2) << '\t' << w(3) << '\t';
LOG_PORT.println();
// LOG_PORT << W << "\n";
}
void initHardware(void)
{
// Set up LED pin (active-high, default to off)
pinMode(HW_LED_PIN, OUTPUT);
digitalWrite(HW_LED_PIN, LOW);
// Set up MPU-9250 interrupt input (active-low)
pinMode(MPU9250_INT_PIN, INPUT_PULLUP);
// Set up serial log port
LOG_PORT.begin(SERIAL_BAUD_RATE);
}
bool initIMU(void)
{
// initialize I2C bus, and reset MPU-9250 to defaults.
if (imu.begin() != INV_SUCCESS)
return false;
// Set up MPU-9250 interrupt:
imu.enableInterrupt(); // Enable interrupt output
imu.setIntLevel(1); // Set interrupt to active-low
imu.setIntLatched(1); // Latch interrupt output
// Configure sensors:
imu.setGyroFSR(IMU_GYRO_FSR);
imu.setAccelFSR(IMU_ACCEL_FSR);
imu.setLPF(IMU_AG_LPF);
// (note: this value will be overridden by the DMP sample rate)
imu.setSampleRate(IMU_AG_SAMPLE_RATE); // accel and gyro rate
// Configure digital motion processor
unsigned short dmpFeatureMask = 0;
dmpFeatureMask |= DMP_FEATURE_SEND_RAW_GYRO;
dmpFeatureMask |= DMP_FEATURE_SEND_RAW_ACCEL;
imu.dmpBegin(dmpFeatureMask, DMP_SAMPLE_RATE);
return true; // Return success
}
void computeThrustMixer(){
Matrix<4,4> V = {
KF, KF, KF, KF,
0, L*KF, 0, -L*KF,
-L*KF, 0, L*KF, 0,
KM, -KM, KM, -KM
};
W = V.Inverse();
}