-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluate.py
116 lines (106 loc) · 4.63 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import codecs
from log import *
from utils import *
LINE_SEPARATOR = get_line_separator()
def get_performance_score(trained_text=None, predicted_text=None, beta=1):
'''
准确率(Precision)和召回率(Recall)
Precision = 正确切分出的词的数目/切分出的词的总数<本次实验只要p值,但是剩下两种评价方法的代码也写在这里了>
Recall = 正确切分出的词的数目/应切分出的词的总数
综合性能指标F-measure
Fβ = (β2 + 1)*Precision*Recall/(β2*Precision + Recall)
β为权重因子,如果将准确率和召回率同等看待,取β = 1,就得到最常用的F1-measure
:param trained_text:
:param predicted_text:
:param beta:
:return:
'''
# with codecs.open(".\\result\\train\\2003-4-17-99756_div.txt", 'r', 'utf-8-sig', 'ignore')as f:
# trained_text = f.read()
# with codecs.open(".\\result\\example\\seg\\2003-4-17-99756_seg.txt", 'r', 'gbk', 'ignore')as f:
# predicted_text = f.read()
L1 = trained_text.split(' ')
L2 = predicted_text.split(' ')
L1 = [x.strip() for x in L1 if x.strip() != '']
L2 = [x.strip() for x in L2 if x.strip() != '']
# print(len(L1), len(L2))
print("trained(div):\n", L1)
print("predicted(seg):\n", L2)
total_words = len(L1) # trained
predicted_words = len(L2) # predicted
correct = 0
gold_before = ''
my_before = ''
i = 1
j = 1
gold_before += L2[0]
my_before += L1[0]
if gold_before == my_before and L2[0] == L1[0]:
correct += 1
while i < predicted_words and j < total_words:
changed = False
if gold_before == my_before:
if L2[i] == L1[j]:
print("L2[{}]:{} matches with L1[{}]:{},correct count+1".format(i, L2[i], j, L1[j]))
correct += 1
gold_before += L2[i]
my_before += L1[j]
i += 1
j += 1
changed = True
else:
gold_before += L2[i]
my_before += L1[j]
i += 1
j += 1
changed = True
elif len(gold_before) < len(my_before):
gold_before += L2[i]
i += 1
changed = True
elif len(gold_before) > len(my_before):
my_before += L1[j]
j += 1
changed = True
if not changed:
try:
raise Exception("Some problem occurs when evaluating the file.Will return.")
except Exception as e:
print("Problem occurs. Jumping current file")
finally:
return 0, 0, 0
recall_rate = correct / total_words
precision_rate = correct / predicted_words
F_measure = (1 + beta) * precision_rate * recall_rate / (beta * precision_rate + recall_rate)
print("total words: %d, predicted words: %d , correct count: %d " % (total_words, predicted_words, correct))
print("recall rate: %.2f, precision rate: %.2f , F-measure: %.2f " % (recall_rate, precision_rate, F_measure))
return recall_rate, precision_rate, F_measure
def main():
import sys, os
sys.stdout = Logger(".\\result\\evaluate_log.txt")
data_path = ".\\result\\train"
standard_path = ".\\result\\example\\seg"
data_file_list = get_file_list(data_path)
standard_file_list = get_file_list(standard_path)
for files in data_file_list:
file_name = files.split("\\")[-1][0:-8]
with codecs.open(files, "r", encoding='utf-8', errors='ignore') as f:
content_1 = f.read()
file_2 = standard_path + "\\" + file_name + "_seg.txt"
if file_2 in standard_file_list:
if os.path.exists(file_2):
with codecs.open(file_2, "r", encoding='gbk', errors='ignore') as f2:
content_2 = f2.read()
print("Comparing {}.txt".format(file_name))
recall_rate, precision_rate, F_measure = get_performance_score(content_1, content_2, 1)
with open(".\\result\\evaluate_measurements.txt", "a+") as f:
if recall_rate == 0 and precision_rate == 0 and F_measure == 0:
f.write("There is some problem with the file: %s" % (os.path.abspath(files)) + LINE_SEPARATOR)
else:
f.write("File: %s, recall rate: %.2f, precision rate: %.2f , F-measure: %.2f " % (
os.path.abspath(files), recall_rate, precision_rate, F_measure) + LINE_SEPARATOR)
if __name__ == '__main__':
main()
# if debug is needed , uncomment this and uncomment first four lines of the function below.
# Don't forget to comment if __name__ == '__main__' !(Line 101-102)
# get_performance_score()