-
Notifications
You must be signed in to change notification settings - Fork 115
/
Copy pathcreate_data.py
513 lines (422 loc) · 17.8 KB
/
create_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
# -*- coding: utf-8 -*-
import copy
import json
import os
import re
import shutil
import urllib.request
from collections import OrderedDict
from io import BytesIO
from zipfile import ZipFile
import difflib
import numpy as np
np.set_printoptions(precision=3)
np.random.seed(2)
'''
Most of the codes are from https://github.com/budzianowski/multiwoz
'''
# GLOBAL VARIABLES
DICT_SIZE = 400
MAX_LENGTH = 50
IGNORE_KEYS_IN_GOAL = ['eod', 'topic', 'messageLen', 'message']
fin = open('utils/mapping.pair','r')
replacements = []
for line in fin.readlines():
tok_from, tok_to = line.replace('\n', '').split('\t')
replacements.append((' ' + tok_from + ' ', ' ' + tok_to + ' '))
def is_ascii(s):
return all(ord(c) < 128 for c in s)
def insertSpace(token, text):
sidx = 0
while True:
sidx = text.find(token, sidx)
if sidx == -1:
break
if sidx + 1 < len(text) and re.match('[0-9]', text[sidx - 1]) and \
re.match('[0-9]', text[sidx + 1]):
sidx += 1
continue
if text[sidx - 1] != ' ':
text = text[:sidx] + ' ' + text[sidx:]
sidx += 1
if sidx + len(token) < len(text) and text[sidx + len(token)] != ' ':
text = text[:sidx + 1] + ' ' + text[sidx + 1:]
sidx += 1
return text
def normalize(text, clean_value=True):
# lower case every word
text = text.lower()
# replace white spaces in front and end
text = re.sub(r'^\s*|\s*$', '', text)
# hotel domain pfb30
text = re.sub(r"b&b", "bed and breakfast", text)
text = re.sub(r"b and b", "bed and breakfast", text)
if clean_value:
# normalize phone number
ms = re.findall('\(?(\d{3})\)?[-.\s]?(\d{3})[-.\s]?(\d{4,5})', text)
if ms:
sidx = 0
for m in ms:
sidx = text.find(m[0], sidx)
if text[sidx - 1] == '(':
sidx -= 1
eidx = text.find(m[-1], sidx) + len(m[-1])
text = text.replace(text[sidx:eidx], ''.join(m))
# normalize postcode
ms = re.findall('([a-z]{1}[\. ]?[a-z]{1}[\. ]?\d{1,2}[, ]+\d{1}[\. ]?[a-z]{1}[\. ]?[a-z]{1}|[a-z]{2}\d{2}[a-z]{2})',
text)
if ms:
sidx = 0
for m in ms:
sidx = text.find(m, sidx)
eidx = sidx + len(m)
text = text[:sidx] + re.sub('[,\. ]', '', m) + text[eidx:]
# weird unicode bug
text = re.sub(u"(\u2018|\u2019)", "'", text)
if clean_value:
# replace time and and price
text = re.sub(timepat, ' [value_time] ', text)
text = re.sub(pricepat, ' [value_price] ', text)
#text = re.sub(pricepat2, '[value_price]', text)
# replace st.
text = text.replace(';', ',')
text = re.sub('$\/', '', text)
text = text.replace('/', ' and ')
# replace other special characters
text = text.replace('-', ' ')
text = re.sub('[\"\<>@\(\)]', '', text) # remove
# insert white space before and after tokens:
for token in ['?', '.', ',', '!']:
text = insertSpace(token, text)
# insert white space for 's
text = insertSpace('\'s', text)
# replace it's, does't, you'd ... etc
text = re.sub('^\'', '', text)
text = re.sub('\'$', '', text)
text = re.sub('\'\s', ' ', text)
text = re.sub('\s\'', ' ', text)
for fromx, tox in replacements:
text = ' ' + text + ' '
text = text.replace(fromx, tox)[1:-1]
# remove multiple spaces
text = re.sub(' +', ' ', text)
# concatenate numbers
tmp = text
tokens = text.split()
i = 1
while i < len(tokens):
if re.match(u'^\d+$', tokens[i]) and \
re.match(u'\d+$', tokens[i - 1]):
tokens[i - 1] += tokens[i]
del tokens[i]
else:
i += 1
text = ' '.join(tokens)
return text
def fixDelex(filename, data, data2, idx, idx_acts):
"""Given system dialogue acts fix automatic delexicalization."""
try:
turn = data2[filename.strip('.json')][str(idx_acts)]
except:
return data
if not isinstance(turn, str):# and not isinstance(turn, unicode):
for k, act in turn.items():
if 'Attraction' in k:
if 'restaurant_' in data['log'][idx]['text']:
data['log'][idx]['text'] = data['log'][idx]['text'].replace("restaurant", "attraction")
if 'hotel_' in data['log'][idx]['text']:
data['log'][idx]['text'] = data['log'][idx]['text'].replace("hotel", "attraction")
if 'Hotel' in k:
if 'attraction_' in data['log'][idx]['text']:
data['log'][idx]['text'] = data['log'][idx]['text'].replace("attraction", "hotel")
if 'restaurant_' in data['log'][idx]['text']:
data['log'][idx]['text'] = data['log'][idx]['text'].replace("restaurant", "hotel")
if 'Restaurant' in k:
if 'attraction_' in data['log'][idx]['text']:
data['log'][idx]['text'] = data['log'][idx]['text'].replace("attraction", "restaurant")
if 'hotel_' in data['log'][idx]['text']:
data['log'][idx]['text'] = data['log'][idx]['text'].replace("hotel", "restaurant")
return data
def getDialogueAct(filename, data, data2, idx, idx_acts):
"""Given system dialogue acts fix automatic delexicalization."""
acts = []
try:
turn = data2[filename.strip('.json')][str(idx_acts)]
except:
return acts
if not isinstance(turn, str): # and not isinstance(turn, unicode):
for k in turn.keys():
# temp = [k.split('-')[0].lower(), k.split('-')[1].lower()]
# for a in turn[k]:
# acts.append(temp + [a[0].lower()])
if k.split('-')[1].lower() == 'request':
for a in turn[k]:
acts.append(a[0].lower())
elif k.split('-')[1].lower() == 'inform':
for a in turn[k]:
acts.append([a[0].lower(), normalize(a[1].lower(), False)])
return acts
def get_summary_bstate(bstate, get_domain=False):
"""Based on the mturk annotations we form multi-domain belief state"""
domains = [u'taxi',u'restaurant', u'hospital', u'hotel',u'attraction', u'train', u'police']
summary_bstate = []
summary_bvalue = []
active_domain = []
for domain in domains:
domain_active = False
booking = []
#print(domain,len(bstate[domain]['book'].keys()))
for slot in sorted(bstate[domain]['book'].keys()):
if slot == 'booked':
if len(bstate[domain]['book']['booked'])!=0:
booking.append(1)
# summary_bvalue.append("book {} {}:{}".format(domain, slot, "Yes"))
else:
booking.append(0)
else:
if bstate[domain]['book'][slot] != "":
booking.append(1)
summary_bvalue.append(["{}-book {}".format(domain, slot.strip().lower()), normalize(bstate[domain]['book'][slot].strip().lower(), False)]) #(["book", domain, slot, bstate[domain]['book'][slot]])
else:
booking.append(0)
if domain == 'train':
if 'people' not in bstate[domain]['book'].keys():
booking.append(0)
if 'ticket' not in bstate[domain]['book'].keys():
booking.append(0)
summary_bstate += booking
for slot in bstate[domain]['semi']:
slot_enc = [0, 0, 0] # not mentioned, dontcare, filled
if bstate[domain]['semi'][slot] == 'not mentioned':
slot_enc[0] = 1
elif bstate[domain]['semi'][slot] in ['dont care', 'dontcare', "don't care", "do not care"]:
slot_enc[1] = 1
summary_bvalue.append(["{}-{}".format(domain, slot.strip().lower()), "dontcare"]) #(["semi", domain, slot, "dontcare"])
elif bstate[domain]['semi'][slot]:
summary_bvalue.append(["{}-{}".format(domain, slot.strip().lower()), normalize(bstate[domain]['semi'][slot].strip().lower(), False)]) #(["semi", domain, slot, bstate[domain]['semi'][slot]])
if slot_enc != [0, 0, 0]:
domain_active = True
summary_bstate += slot_enc
# quasi domain-tracker
if domain_active:
summary_bstate += [1]
active_domain.append(domain)
else:
summary_bstate += [0]
#print(len(summary_bstate))
assert len(summary_bstate) == 94
if get_domain:
return active_domain
else:
return summary_bstate, summary_bvalue
def analyze_dialogue(dialogue, maxlen):
"""Cleaning procedure for all kinds of errors in text and annotation."""
d = dialogue
# do all the necessary postprocessing
if len(d['log']) % 2 != 0:
#print path
print('odd # of turns')
return None # odd number of turns, wrong dialogue
d_pp = {}
d_pp['goal'] = d['goal'] # for now we just copy the goal
usr_turns = []
sys_turns = []
# last_bvs = []
for i in range(len(d['log'])):
if len(d['log'][i]['text'].split()) > maxlen:
# print('too long')
return None # too long sentence, wrong dialogue
if i % 2 == 0: # usr turn
text = d['log'][i]['text']
if not is_ascii(text):
# print('not ascii')
return None
usr_turns.append(d['log'][i])
else: # sys turn
text = d['log'][i]['text']
if not is_ascii(text):
# print('not ascii')
return None
belief_summary, belief_value_summary = get_summary_bstate(d['log'][i]['metadata'])
d['log'][i]['belief_summary'] = str(belief_summary)
d['log'][i]['belief_value_summary'] = belief_value_summary
sys_turns.append(d['log'][i])
d_pp['usr_log'] = usr_turns
d_pp['sys_log'] = sys_turns
return d_pp
def get_dial(dialogue):
"""Extract a dialogue from the file"""
dial = []
d_orig = analyze_dialogue(dialogue, MAX_LENGTH) # max turn len is 50 words
if d_orig is None:
return None
usr = [t['text'] for t in d_orig['usr_log']]
sys = [t['text'] for t in d_orig['sys_log']]
sys_a = [t['dialogue_acts'] for t in d_orig['sys_log']]
bvs = [t['belief_value_summary'] for t in d_orig['sys_log']]
domain = [t['domain'] for t in d_orig['usr_log']]
for item in zip(usr, sys, sys_a, domain, bvs):
dial.append({'usr':item[0],'sys':item[1], 'sys_a':item[2], 'domain':item[3], 'bvs':item[4]})
return dial
def loadData():
data_url = "data/multi-woz/data.json"
dataset_url = "https://www.repository.cam.ac.uk/bitstream/handle/1810/280608/MULTIWOZ2.zip?sequence=3&isAllowed=y"
if not os.path.exists("data"):
os.makedirs("data")
os.makedirs("data/multi-woz")
if not os.path.exists(data_url):
print("Downloading and unzipping the MultiWOZ dataset")
resp = urllib.request.urlopen(dataset_url)
zip_ref = ZipFile(BytesIO(resp.read()))
zip_ref.extractall("data/multi-woz")
zip_ref.close()
shutil.copy('data/multi-woz/MULTIWOZ2 2/data.json', 'data/multi-woz/')
shutil.copy('data/multi-woz/MULTIWOZ2 2/valListFile.json', 'data/multi-woz/')
shutil.copy('data/multi-woz/MULTIWOZ2 2/testListFile.json', 'data/multi-woz/')
shutil.copy('data/multi-woz/MULTIWOZ2 2/dialogue_acts.json', 'data/multi-woz/')
def getDomain(idx, log, domains, last_domain):
if idx == 1:
active_domains = get_summary_bstate(log[idx]["metadata"], True)
crnt_doms = active_domains[0] if len(active_domains)!=0 else domains[0]
return crnt_doms
else:
ds_diff = get_ds_diff(log[idx-2]["metadata"], log[idx]["metadata"])
if len(ds_diff.keys()) == 0: # no clues from dialog states
crnt_doms = last_domain
else:
crnt_doms = list(ds_diff.keys())
# print(crnt_doms)
return crnt_doms[0] # How about multiple domains in one sentence senario ?
def get_ds_diff(prev_d, crnt_d):
diff = {}
# Sometimes, metadata is an empty dictionary, bug?
if not prev_d or not crnt_d:
return diff
for ((k1, v1), (k2, v2)) in zip(prev_d.items(), crnt_d.items()):
assert k1 == k2
if v1 != v2: # updated
diff[k2] = v2
return diff
def createData():
# download the data
loadData()
# create dictionary of delexicalied values that then we will search against, order matters here!
# dic = delexicalize.prepareSlotValuesIndependent()
delex_data = {}
fin1 = open('data/multi-woz/data.json', 'r')
data = json.load(fin1)
fin2 = open('data/multi-woz/dialogue_acts.json', 'r')
data2 = json.load(fin2)
for didx, dialogue_name in enumerate(data):
dialogue = data[dialogue_name]
domains = []
for dom_k, dom_v in dialogue['goal'].items():
if dom_v and dom_k not in IGNORE_KEYS_IN_GOAL: # check whether contains some goal entities
domains.append(dom_k)
idx_acts = 1
last_domain, last_slot_fill = "", []
for idx, turn in enumerate(dialogue['log']):
# normalization, split and delexicalization of the sentence
origin_text = normalize(turn['text'], False)
# origin_text = delexicalize.markEntity(origin_text, dic)
dialogue['log'][idx]['text'] = origin_text
if idx % 2 == 1: # if it's a system turn
cur_domain = getDomain(idx, dialogue['log'], domains, last_domain)
last_domain = [cur_domain]
dialogue['log'][idx - 1]['domain'] = cur_domain
dialogue['log'][idx]['dialogue_acts'] = getDialogueAct(dialogue_name, dialogue, data2, idx, idx_acts)
idx_acts += 1
# FIXING delexicalization:
dialogue = fixDelex(dialogue_name, dialogue, data2, idx, idx_acts)
delex_data[dialogue_name] = dialogue
# if didx > 10:
# break
# with open('data/multi-woz/woz2like_data.json', 'w') as outfile:
# json.dump(delex_data, outfile)
return delex_data
def buildDelexDict(origin_sent, delex_sent):
dictionary = {}
s = difflib.SequenceMatcher(None, delex_sent.split(), origin_sent.split())
bs = s.get_matching_blocks()
for i, b in enumerate(bs):
if i < len(bs)-2:
a_start = b.a + b.size
b_start = b.b + b.size
b_end = bs[i+1].b
dictionary[a_start] = " ".join(origin_sent.split()[b_start:b_end])
return dictionary
def divideData(data):
"""Given test and validation sets, divide
the data for three different sets"""
testListFile = []
fin = open('data/multi-woz/testListFile.json', 'r')
for line in fin:
testListFile.append(line[:-1])
fin.close()
valListFile = []
fin = open('data/multi-woz/valListFile.json', 'r')
for line in fin:
valListFile.append(line[:-1])
fin.close()
trainListFile = open('data/trainListFile', 'w')
test_dials = []
val_dials = []
train_dials = []
# dictionaries
word_freqs_usr = OrderedDict()
word_freqs_sys = OrderedDict()
count_train, count_val, count_test = 0, 0, 0
for dialogue_name in data:
# print dialogue_name
dial_item = data[dialogue_name]
domains = []
for dom_k, dom_v in dial_item['goal'].items():
if dom_v and dom_k not in IGNORE_KEYS_IN_GOAL: # check whether contains some goal entities
domains.append(dom_k)
dial = get_dial(data[dialogue_name])
if dial:
dialogue = {}
dialogue['dialogue_idx'] = dialogue_name
dialogue['domains'] = list(set(domains)) #list(set([d['domain'] for d in dial]))
last_bs = []
dialogue['dialogue'] = []
for turn_i, turn in enumerate(dial):
# usr, usr_o, sys, sys_o, sys_a, domain
turn_dialog = {}
turn_dialog['system_transcript'] = dial[turn_i-1]['sys'] if turn_i > 0 else ""
turn_dialog['turn_idx'] = turn_i
turn_dialog['belief_state'] = [{"slots": [s], "act": "inform"} for s in turn['bvs']]
turn_dialog['turn_label'] = [bs["slots"][0] for bs in turn_dialog['belief_state'] if bs not in last_bs]
turn_dialog['transcript'] = turn['usr']
turn_dialog['system_acts'] = dial[turn_i-1]['sys_a'] if turn_i > 0 else []
turn_dialog['domain'] = turn['domain']
last_bs = turn_dialog['belief_state']
dialogue['dialogue'].append(turn_dialog)
if dialogue_name in testListFile:
test_dials.append(dialogue)
count_test += 1
elif dialogue_name in valListFile:
val_dials.append(dialogue)
count_val += 1
else:
trainListFile.write(dialogue_name + '\n')
train_dials.append(dialogue)
count_train += 1
print("# of dialogues: Train {}, Val {}, Test {}".format(count_train, count_val, count_test))
# save all dialogues
with open('data/dev_dials.json', 'w') as f:
json.dump(val_dials, f, indent=4)
with open('data/test_dials.json', 'w') as f:
json.dump(test_dials, f, indent=4)
with open('data/train_dials.json', 'w') as f:
json.dump(train_dials, f, indent=4)
# return word_freqs_usr, word_freqs_sys
def main():
print('Create WOZ-like dialogues. Get yourself a coffee, this might take a while.')
delex_data = createData()
print('Divide dialogues...')
divideData(delex_data)
# print('Building dictionaries')
# buildDictionaries(word_freqs_usr, word_freqs_sys)
if __name__ == "__main__":
main()