-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathkeras_train.py
140 lines (107 loc) · 5.56 KB
/
keras_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from keras_models.lstm import LSTMModel
from keras_models.cnn import CNNModel
from keras_models.cnnlstm import CNNLSTMModel
from ReadData import ReadData
import os
import pandas as pd
import numpy as np
import argparse
from tqdm import tqdm
from keras.optimizers import Adam, RMSprop, SGD
from keras.callbacks import TensorBoard, ModelCheckpoint, EarlyStopping, ReduceLROnPlateau
import tensorflow as tf
class TrainValTensorBoard(TensorBoard):
def __init__(self, log_dir='./logs', **kwargs):
training_log_dir = os.path.join(log_dir, 'training')
super(TrainValTensorBoard, self).__init__(training_log_dir, **kwargs)
self.val_log_dir = os.path.join(log_dir, 'validation')
def set_model(self, model):
self.val_writer = tf.summary.FileWriter(self.val_log_dir)
super(TrainValTensorBoard, self).set_model(model)
def on_epoch_end(self, epoch, logs=None):
logs = logs or {}
val_logs = {k.replace('val_', ''): v for k, v in logs.items() if k.startswith('val_')}
for name, value in val_logs.items():
summary = tf.Summary()
summary_value = summary.value.add()
summary_value.simple_value = value.item()
summary_value.tag = name
self.val_writer.add_summary(summary, epoch)
self.val_writer.flush()
logs = {k: v for k, v in logs.items() if not k.startswith('val_')}
super(TrainValTensorBoard, self).on_epoch_end(epoch, logs)
def on_train_end(self, logs=None):
super(TrainValTensorBoard, self).on_train_end(logs)
self.val_writer.close()
parser = argparse.ArgumentParser()
parser.add_argument('--model', '-m', help='Name of Model to use [lstm, cnn, cnnlstm]', required=True)
parser.add_argument('--training_csv', '-csv', help='Path to Training CSV file', required=True)
parser.add_argument('--embedding', '-e', help='Path to word embedding model | Default: "embeddings/skipgram-100/skipgram.bin"', default='embeddings/skipgram-100/skipgram.bin')
parser.add_argument('--n_classes', '-n', help='No of classes to predict | Default: 2', default=2, type=int)
parser.add_argument('--optimizer', '-o', help='which Optimizer to use? | Default: "RMSprop"', default='rmsprop')
parser.add_argument('--batch_size', '-b', help='What should be the batch size? | Default: 32', default=32, type=int)
parser.add_argument('--epochs', '-ep', help='How many epochs to Train? | Default: 100', default=100, type=int)
parser.add_argument('--train_val_split', '-s', help='What should be the train vs val split fraction? | Default: 0.1', default=0.1, type=float)
parser.add_argument('--no_samples', '-ns', help='How many samples to train on? | Default: 1000', default=1000, type=int)
args = parser.parse_args()
model_list = {'lstm': LSTMModel, 'cnn': CNNModel, 'cnnlstm': CNNLSTMModel}
input_shape = (75, 101)
n_classes = args.n_classes
model = model_list[args.model](input_shape=input_shape, output_shape=n_classes)
if args.optimizer == 'adam':
optimizer = Adam()
elif args.optimizer == 'sgd':
optimizer = SGD()
elif args.optimizer == 'rmsprop':
optimizer = RMSprop()
else:
print('{} optimizer not added yet. Using Adam instead.'.format(args.optimizer))
optimizer = Adam()
if not os.path.exists("logs_{}".format(args.model)):
os.mkdir("logs_{}".format(args.model))
log_dir = "logs_{}/{}".format(args.model, args.optimizer)
if not os.path.exists(log_dir):
os.mkdir(log_dir)
if not os.path.exists("weights_{}".format(args.model)):
os.mkdir("weights_{}".format(args.model))
weights_dir = "weights_{}/{}".format(args.model, args.optimizer)
if not os.path.exists(weights_dir):
os.mkdir(weights_dir)
model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy'])
model.summary()
logging = TrainValTensorBoard(log_dir=log_dir)
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2,
patience=2, min_lr=0, verbose=1, cooldown=1)
checkpoint = ModelCheckpoint(weights_dir + '/ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5',
monitor='loss', save_weights_only=True, save_best_only=True, period=3)
earlystopper = EarlyStopping(monitor='val_loss',
min_delta=0,
patience=5,
verbose=1, mode='auto')
reader = ReadData(args.training_csv, args.embedding,
batch_size=args.batch_size, no_samples=args.no_samples,
train_val_split=args.train_val_split)
#train_x, train_y = reader.read_all_train()
val_x, val_y = reader.read_all_val()
for epoch in range(args.epochs):
i = 0
no_batches = int(reader.train_size/args.batch_size)
for _ in tqdm(range(no_batches)):
start = i
end = i+args.batch_size
i = end
epoch_x, epoch_y = reader.get_next_batch(start, end)
model.train_on_batch(epoch_x, epoch_y)
#model.fit(x=epoch_x, y=epoch_y, batch_size=args.batch_size, epochs=1,
# validation_data=(val_x, val_y), callbacks=[logging, reduce_lr, earlystopper, checkpoint])
print(model.metrics_names)
print(model.evaluate(val_x, val_y))
'''
train_generator = reader.generate_train_batch()
val_generator = reader.generate_train_batch()
model.fit_generator(generator=train_generator, steps_per_epoch=int(reader.train_size/args.batch_size),
validation_data=val_generator, validation_steps=int(reader.val_size/args.batch_size),
epochs=args.epochs, verbose=1, callbacks=[logging, reduce_lr, earlystopper, checkpoint])
'''
m.save_weights(os.path.join(weights_dir, "final_weights.model"))
m.save(os.path.join(weights_dir, "final.model"))